Advertisement

Minds and Machines

, Volume 25, Issue 4, pp 321–338 | Cite as

How Sensorimotor Interactions Enable Sentence Imitation

  • Tzu-Wei Hung
Article
  • 331 Downloads

Abstract

Despite intensive debates regarding action imitation and sentence imitation, few studies have examined their relationship. In this paper, we argue that the mechanism of action imitation is necessary and in some cases sufficient to describe sentence imitation. We first develop a framework for action imitation in which key ideas of Hurley’s shared circuits model are integrated with Wolpert et al.’s motor selection mechanism and its extensions. We then explain how this action-based framework clarifies sentence imitation without a language-specific faculty. Finally, we discuss the empirical support for and philosophical significance of this perspective.

Keywords

Sensorimotor interactions Action imitation Sentence imitation Word-referent mapping Syntactic abstraction 

Notes

Acknowledgments

This research was sponsored in part by the Ministry of Science and Technology, Taiwan under Grant No. 101-2410-H-001-100-MY2.

References

  1. Austin, J. L. (1962). How to do things with words. Cambridge, MA: Harvard University Press.Google Scholar
  2. Barrett, H. C., & Kurzban, R. (2006). Modularity in cognition: Framing the debate. Psychological Review, 113, 628–647.CrossRefGoogle Scholar
  3. Boza, A. S., Guerra, R. H., & Gajate, A. (2011). Artificial cognitive control system based on the shared circuits model of sociocognitive capacities. A first approach. Engineering Applications of Artificial Intelligence, 24(2), 209–219.CrossRefGoogle Scholar
  4. Brass, M., Schmitt, R. M., Spengler, S., & Gergely, G. (2007). Investigating action understanding: Inferential processes versus action simulation. Current Biology, 17, 2117–2121.CrossRefGoogle Scholar
  5. Brooks, R. A. (1999). Cambrian intelligence: The early history of the New AI. Cambridge, MA: The MIT Press.MATHGoogle Scholar
  6. Byrne, R. W. (2006). Parsing behaviour. A mundane origin for an extraordinary ability? In N. Enfield & S. Levinson (Eds.), The roots of human sociality (pp. 478–505). New York, NY: Berg.Google Scholar
  7. Cappelen, H., & Lepore, E. (2005). Insensitive semantics: A defense of semantic minimalism and speech act pluralism. Oxford: Blackwell.CrossRefGoogle Scholar
  8. Carruthers, P. (2006). The architecture of the mind. Oxford: Oxford University Press.CrossRefGoogle Scholar
  9. Cass, H., Reilly, S., Owen, L., Wisbeach, A., Weekes, L., Slonims, V., & Charman, T. (2003). Findings from a multidisciplinary clinical case series of females with Rett syndrome. Developmental Medicine and Child Neurology, 45(5), 325–337.CrossRefGoogle Scholar
  10. Clark, A., & Lappin, S. (2010). Linguistic nativism and the poverty of the stimulus. Oxford: Wiley Blackwell.Google Scholar
  11. Cosmides, L., & Tooby, J. (1992). Cognitive adaptations for social exchange. In J. Barkow, L. Cosmides, & J. Tooby (Eds.), The adapted mind: Evolutionary psychology and the generation of culture. New York, NY: Oxford University Press.Google Scholar
  12. Dever, J. (2012). Compositionality. In G. Russell & D. Graff Fara (Eds.), The Routledge handbook to the philosophy of language (pp. 91–102).Google Scholar
  13. Evans, N., & Levinson, S. C. (2009). The myth of language universals: Language diversity and its importance for cognitive science. Behavioral and Brain Sciences, 32(5), 429–492.CrossRefGoogle Scholar
  14. Fodor, J. (2008). LOT 2: The language of thought revisited. Oxford: Oxford University Press.CrossRefGoogle Scholar
  15. Garrod, S., Gambi, C., & Pickering, M. J. (2014). Prediction at all levels: forward model predictions can enhance comprehension. Language, Cognition and Neuroscience, 29(1), 46–48.CrossRefGoogle Scholar
  16. Garrod, S., & Pickering, M. J. (2008). Shared circuits in language and communication. Behavioural and Brain Sciences, 31(1), 26–27.CrossRefGoogle Scholar
  17. Glenberg, A. M., & Gallese, V. (2012). Action-based language: A theory of language acquisition, comprehension, and production. Cortex, 48, 905–922.CrossRefGoogle Scholar
  18. Graf Estes, K., Evans, J. L., Alibali, M. W., & Saffran, J. R. (2007). Can infants map meaning to newly segmented words? Statistical segmentation and word learning. Psychological Science, 18, 254–260.CrossRefGoogle Scholar
  19. Greenberg, A., Bellana, B., & Bialystok, E. (2013). Perspective - taking ability in bilingual children: Extending advantages in executive control to spatial reasoning. Cognitive Development, 28(1), 41–50.CrossRefGoogle Scholar
  20. Grice, H. P. (1975). Logic and conversation. In P. Cole & J. L. Morgan (Eds.), Syntax and semantics 3: Speech acts (pp. 41–58). New York, NY: Academic Press.Google Scholar
  21. Guenther, F. H., & Vladusich, T. (2012). A neural theory of speech acquisition and production. Journal of Neurolinguistics, 25(5), 408–422.CrossRefGoogle Scholar
  22. Hamilton, A. F. (2013). The mirror neuron system contributes to social responding. Cortex, 49(10), 2957–2959.CrossRefGoogle Scholar
  23. Haruno, M., Wolpert, D. M., & Kawato, M. (2003). Hierarchical MOSAIC for movement generation. International Congress Series, 1250, 575–590.CrossRefGoogle Scholar
  24. Hickok, G. (2014). The architecture of speech production and the role of the phoneme in speech processing. Language, Cognition and Neuroscience, 29(1), 2–20.CrossRefGoogle Scholar
  25. Hickok, G., & Poeppel, D. (2004). Dorsal and ventral streams: A framework for understanding aspects of the functional anatomy of language. Cognition, 92(1–2), 67–99.CrossRefGoogle Scholar
  26. Hung, T. -W. (Ed.). (2014). What action comprehension tells us about meaning interpretation. Communicative action: selected papers of the 2013 IEAS conference on language and action. Singapore: Springer.Google Scholar
  27. Hurley, S. (2001). Perception and action: Alternative views. Synthese, 129, 3–40.CrossRefGoogle Scholar
  28. Hurley, S. (2008). The shared circuits model (SCM): How control, mirroring, and simulation can enable imitation, deliberation, and mind reading. Behavioral and Brain Sciences, 31(1), 1–22.CrossRefGoogle Scholar
  29. Kiverstein, J., & Clark, A. (2008). Bootstrapping the mind. Behavioural and Brain Sciences, 31(1), 41–52.CrossRefGoogle Scholar
  30. Kovács, Á. M. (2009). Early bilingualism enhances mechanisms of false-belief reasoning. Developmental Science, 12(1), 48–54.CrossRefGoogle Scholar
  31. Kovács, Á. M., & Mehler, J. (2009). Cognitive gains in 7-month-old bilingual infants. Proceedings of the National Academy of Sciences, 106, 6556–6560.CrossRefGoogle Scholar
  32. Mannell, R., Cox, F., & Harrington, J. (2014). An introduction to phonetics and phonology. Macquarie University. Retrieved 26 Sep 2015 from http://clas.mq.edu.au/speech/phonetics/index.html.
  33. Marr, D. (1982). Vision. San Francisco, CA: W.H. Freeman.Google Scholar
  34. Miller, J. F. (1973). Sentence imitation in pre-school children. Language and Speech, 16(1), 1–14.Google Scholar
  35. Nelson, K. E., Carskaddon, G., & Bonvillian, J. D. (1973). Syntax acquisition: Impact of experimental variation in adult verbal interaction with the child. Child Development, 44(3), 497–504.CrossRefGoogle Scholar
  36. Over, H., & Gattis, M. (2010). Verbal imitation is based on intention understanding. Cognitive Development, 25(1), 46–55.CrossRefGoogle Scholar
  37. Oztop, E., Wolpert, D., & Kawato, M. (2005). Mental state inference using visual control parameters. Cognitive Brain Research, 22(2), 129–151.CrossRefGoogle Scholar
  38. Pickering, M. J., & Garrod, S. (2013). An integrated theory of language production and comprehension. Behavioural and Brain Sciences, 36(4), 329–347.CrossRefGoogle Scholar
  39. Pinker, S. (1994). The language instinct: How the mind creates language. New York, NY: Harper Collins.CrossRefGoogle Scholar
  40. Prior, M., & Ozonoff, S. (2007). Psychological factors in autism. In F. R. Volkmar (Ed.), Autism and pervasive developmental disorders (pp. 69–128). New York, NY: Cambridge University Press.CrossRefGoogle Scholar
  41. Pulvermüller, F., & Fadiga, L. (2010). Active perception: Sensorimotor circuits as a cortical basis for language. Nature Reviews Neuroscience, 11, 351–360.CrossRefGoogle Scholar
  42. Ratner, N. B., & Sih, C. C. (1987). Effects of gradual increases in sentence length and complexity on children’s dysfluency. Journal of Speech and Hearing Disorders, 52(3), 278–287.CrossRefGoogle Scholar
  43. Seeff-Gabriel, B., Chiat, S., & Dodd, B. (2010). Sentence imitation as a tool in identifying expressive morphosyntactic difficulties in children with severe speech difficulties. International Journal of Language and Communication Disorders, 45(6), 691–702.CrossRefGoogle Scholar
  44. Silverman, S. W., & Ratner, N. B. (1997). Syntactic complexity, fluency, and accuracy of sentence imitation in adolescents. Journal of Speech, Language, and Hearing Research, 40(1), 95–106.CrossRefGoogle Scholar
  45. Sperber, D. (2002). In defense of massive modularity. In E. Dupoux (Ed.), Language, brain and cognitive development: Essays in honor of Jacques Mehler. Mass: MIT Press.Google Scholar
  46. Thompson, S. P., & Newport, E. L. (2007). Statistical learning of syntax: The role of transitional probability. Language Learning and Development, 3(1), 1–42.CrossRefGoogle Scholar
  47. Tincoff, R., & Jusczyk, P. W. (1999). Some beginnings of word comprehension in 6-month-olds. Psychological Science, 10(2), 172–175.CrossRefGoogle Scholar
  48. Tourville, J. A., & Guenther, F. H. (2011). The DIVA model: A neural theory of speech acquisition and production. Language and Cognitive Processes, 26(7), 952–981.CrossRefGoogle Scholar
  49. Verhoeven, L., Steenge, J., van Weerdenburg, M., & van Balkom, H. (2011). Assessment of second language proficiency in bilingual children with specific language impairment: A clinical perspective. Research in Developmental Disabilities, 32(5), 1798–1807.CrossRefGoogle Scholar
  50. Willatts, P. (1999). Development of means–end behavior in young infants: Pulling a support to retrieve a distant object. Developmental Psychology, 35(3), 651–667.CrossRefGoogle Scholar
  51. Wolpert, D., Doya, K., & Kawato, M. (2003). A unifying computational framework for motor control and social interaction. Philosophical Transactions of the Royal Society of London B, 358(1431), 593–602.CrossRefGoogle Scholar
  52. Woodyatt, G., & Ozanne, A. (1992). Communication abilities and Rett syndrome. Journal of Autism and Developmental Disorders, 22(2), 155–173.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2015

Authors and Affiliations

  1. 1.Institute of European and American StudiesAcademia SinicaTaipeiTaiwan

Personalised recommendations