Minds and Machines

, Volume 25, Issue 2, pp 213–229 | Cite as

The Uses of Colour Vision: Ornamental, Practical, and Theoretical



What is colour vision for? In the popular imagination colour vision is for “seeing the colours” — adding hue to the achromatic world of shape, depth and motion. On this view colour vision plays little more than an ornamental role, lending glamour to an otherwise monochrome world. This idea has guided much theorising about colour within vision science and philosophy. However, we argue that a broader approach is needed. Recent research in the psychology of colour demonstrates that colour vision is integral to a variety of visual processes, helping us to perform many types of visual tasks. We discuss some of this research and consider its implications for philosophical theories of colour.


Philosophy of mind Philosophy of perception Philosophy of colour Psychophysics Vision science 



M. Chirimuuta would like to thank members of the 2012 and 2014 Perception seminars at the University of Pittsburgh for many helpful comments on this material. Supported by Canadian Institute of Health Research (CIHR) grant #MOP 12339 given to F. A. A. Kingdom.


  1. Akins, K. A. (2001). More than mere coloring: A dialog between philosophy and neuroscience on the nature of spectral vision. In S. M. B. Fitzpatrick & J. T. Bruer (Eds.), Carving our destiny: Scientific research faces a new millennium. Washington: Joseph Henry Press.Google Scholar
  2. Allen, K. (2015). Colour physicalism, naive realism, and the argument from structure. Minds and Machines. doi: 10.1007/s11023-014-9353-7.
  3. Brogaard, B. (2012). Color eliminativism or color relativism? Philosophical Papers, 41(2), 305–321.CrossRefGoogle Scholar
  4. Brogaard, B. (2015). The self-locating property theory of color. Minds and Machines. doi: 10.1007/s11023-015-9373-y.
  5. Byrne, A., & Hilbert, D. (2003). Color realism and color science. Behavioural and Brain Sciences, 26, 3–21.Google Scholar
  6. Campenhausen, C. (1986). Photoreceptors, lightness constancy and color vision. Naturwissenschaften, 73, 674–675.CrossRefGoogle Scholar
  7. Chirimuuta, M. (2014). The metaphysical significance of colour categorization: Mind, world, and their complicated relation. In Anderson, Biggam, Hough & Kay (Eds.), Colour Studies: a Broad Spectrum. Amsterdam and Philadelphia: John Benjamins.Google Scholar
  8. Chirimuuta, M. (2015). Outside Color: Perceptual science and the puzzle of color in philosophy. Cambridge, MA: MIT Press.Google Scholar
  9. Cohen, J. (2009). The red and the real. Oxford: Oxford University Press.CrossRefGoogle Scholar
  10. Cohen, J. (2015). Ecumenicism, comparability, and color, or: How to have your cake and eat it, too. Minds and Machines. doi: 10.1007/s11023-014-9354-6.
  11. Conway, B. R. (2009). Color vision, cones, and color-coding in the cortex. Neuroscientist, 15(3), 274–290.MathSciNetCrossRefGoogle Scholar
  12. Cowey, A., Alexander, I., Heywood, C. A., & Kentridge, R. W. (2008). Pupillary responses to coloured and contourless displays in total cerebral achromatopsia. Brain, 131, 2153–2160.CrossRefGoogle Scholar
  13. Gegenfurtner, K. R., & Kiper, D. C. (2003). Color vision. Annual Review of Neuroscience, 26, 181–206.CrossRefGoogle Scholar
  14. Hardin, C. (1992). The virtues of illusion. Philosophical Studies, 68(3), 371–382.CrossRefGoogle Scholar
  15. Hardin, C. L. (1993). Color for philosophers. Indiana: Indianapolis.Google Scholar
  16. Hume, D. (1975/1777). Enquiries concerning human understanding and concerning principles of morals. 3rd (edn) Oxford: Oxford University Press.Google Scholar
  17. Jacobs, G. H. (2004). Comparative color vision. In W. J. S. Krieg & L. M. Chapula (Eds.), The visual neurosciences (pp. 962–973). Cambridge, Mass: MIT Press.Google Scholar
  18. Kentridge, R. W., Heywood, C. A., & Cowey, A. (2004). Chromatic edges, surfaces and constancies in cerebral achromatopsia. Neuropsychologia, 42, 821–830.CrossRefGoogle Scholar
  19. Kersten, D., Mamassian, P., & Yuille, A. (2004). Object perception as bayesian inference. Annual Review of Psychology, 55, 271–304.CrossRefGoogle Scholar
  20. Kingdom, F. A. A. (2003). Colour brings relief to human vision. Nature Neuroscience, 6, 641–644.CrossRefGoogle Scholar
  21. Kingdom, F. A. A., Beauce, C., & Hunter, L. (2004). Colour vision brings clarity to shadows. Perception, 33, 907–914.CrossRefGoogle Scholar
  22. Kingdom, F. A. A., & Libenson, L. (2015). Dichoptic colour saturation mixture: Binocular luminance contrast promotes perceptual averaging. Journal of Vision (in press).Google Scholar
  23. Livingstone, M. S., & Hubel, D. H. (1987). Psychophysical evidence for separate channels for the perception of form, color, movement and depth. Journal of Neuroscience, 7(11), 3416–3468.Google Scholar
  24. Livingstone, M. S., & Hubel, D. H. (1988). Segregation of form, color, movement and depth: Anatomy, physiology and perception. Science, 240, 740–749.CrossRefGoogle Scholar
  25. Marvullo, J. (1989). Color vision: A photographer’s guide (p. 58). Watson-Guptill Publications: New York.Google Scholar
  26. Mausfeld, R. (2010). Colour within an internalist framework: The role of ‘colour’ in the structure of the perceptual system. In J. Cohen & M. Matthen (Eds.), Color ontology and color science. Cambridge: MIT Press.Google Scholar
  27. Maximov, V. V. (2000). Environmental factors which may have led to the appearance of colour vision. Philosophical Transactions of the Royal Society London B, 355, 1239–1242.CrossRefGoogle Scholar
  28. McIlhagga, W. H., & Mullen, K. T. (1996). Contour integration with color and luminance contrast. Vision Research, 36, 1265–1279.CrossRefGoogle Scholar
  29. McIlhagga, W. H. & Mullen, K. T. (1997). The contribution of colour to contour detection. In C. M. Dickenson, I. Murray, & D. Carden (Eds.), Colour vision research: Proceedings of the John Dalton conference (pp.187–197). London: Taylor & Francis.Google Scholar
  30. Merleau-Ponty, M (1964/2001) Eye and mind in Continental Aesthetics. In R. Kearney & D. Rasmussen (Eds.), Transaction carleton dallery, Oxford: Blackwell Publishing.Google Scholar
  31. Mollon, J. D. (1989). Tho’ she kneel’d in that place where they grew…: The uses and origins of primate color vision. Journal of Experimental Biology, 146, 21–38.Google Scholar
  32. Mullen, K. T., Beaudot, W. H. A., & McIlhagga, W. H. (2000). Contour integration in color vision: A common process for the blue-yellow, red-green and luminance mechanisms. Vision Research, 40, 639–655.CrossRefGoogle Scholar
  33. Osorio, D., & Vorobyev, M. (2005). Photoreceptor spectral sensitivities in terrestrial animals: Adaptations for luminance and colour vision. Proceedings of the Royal Society of London, B, 272, 1745–1752.CrossRefGoogle Scholar
  34. Rao, R. P. N., Olshausen, B. A., & Lewicki, M. S. (Eds.). (2002). Probabilistic models of the brain: Perception and neural function. MIT Press: Cambridge.Google Scholar
  35. Rubin, J. M., & Richards, W. A. (1982). Color vision and image intensities: When are changes material? Biological Cybernatics, 45, 215–226.CrossRefGoogle Scholar
  36. Sacks, O. (1995). An Anthropologist on Mars. London: Picador.Google Scholar
  37. Shevell, S. K., & Kingdom, F. A. A. (2008). Color in Complex Scenes. The Annual Review of Psychology, 59, 143–166.CrossRefGoogle Scholar
  38. Solomon, S. G., & Lennie, P. (2007). The machinery of colour vision. Nature Reviews Neuroscience, 8, 276–286.CrossRefGoogle Scholar
  39. Switkes, E., Bradley, A., & de Valois, K. K. (1988). Contrast dependence and mechanisms of masking interactions among chromatic and luminance gratings. Journal of the Optical Society of America A: Optics, Image Science, and Vision, 5, 1149–1162.CrossRefGoogle Scholar
  40. Wade, N. J., & Brožek, J. (2001). Purkinje’s vision. Hillsdale: Lawrence Erlbaum Associates.Google Scholar
  41. Wang, D., & Kingdom, F. A. A. (2014). Binocular luminance contrast reduces dichoptic masking between chromatic stimuli. Journal of Vision, 14(10), 962.CrossRefGoogle Scholar
  42. Watkins (2002). Rediscovering Colors: A study in Pollyanna realism. Dordrecht: Kluwer.Google Scholar
  43. Zeki, S. (1978). Functional specialisation in the visual cortex of the rhesus monkey. Nature, 274, 423–428.CrossRefGoogle Scholar
  44. Zeki, S. (1993). A vision of the brain. Oxford: Blackwell.Google Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2015

Authors and Affiliations

  1. 1.Department of History and Philosophy of ScienceUniversity of PittsburghPittsburghUSA
  2. 2.McGill Vision Research Unit, Department of OphthalmologyMcGill UniversityMontrealCanada

Personalised recommendations