Minds and Machines

, Volume 18, Issue 2, pp 179–225 | Cite as

Coordinating with the Future: The Anticipatory Nature of Representation

  • Giovanni Pezzulo


Humans and other animals are able not only to coordinate their actions with their current sensorimotor state, but also to imagine, plan and act in view of the future, and to realize distal goals. In this paper we discuss whether or not their future-oriented conducts imply (future-oriented) representations. We illustrate the role played by anticipatory mechanisms in natural and artificial agents, and we propose a notion of representation that is grounded in the agent’s predictive capabilities. Therefore, we argue that the ability that characterizes and defines a true cognitive mind, as opposed to a merely adaptive system, is that of building representations of the non-existent, of what is not currently (yet) true or perceivable, of what is desired. A real mental activity begins when the organism is able to endogenously (i.e. not as the consequence of current perceptual stimuli) produce an internal representation of the world in order to select and guide its conduct goal-directed: the mind serves to coordinate with the future.


Anticipation Expectation Internal model Prediction Representation Simulation Goal 



This work is supported by the EU-funded projects MindRACES: from Reactive to Anticipatory Cognitive Embodied Systems (FP6-511931) and euCognition: The European Network for the Advancement of Artificial Cognitive Systems (FP6-26408). The author wants to thank Prof. Cristiano Castelfranchi for countless discussions and insightful comments.


  1. Adams, J. A. (1971). A closed-loop theory of motor learning. Journal of Motor Behavior, 3, 111–149.Google Scholar
  2. Arbib, M. (1992). Schema theory. In S. Shapiro (Ed.), Encyclopedia of artificial intelligence (2nd ed., Vol. 2, pp. 1427–1443). Wiley.Google Scholar
  3. Balkenius, C., & Hulth, N. (1999). Attention as selection-for-action: A scheme for active perception. In Proceedings of EuRobot-1999, Zurich.Google Scholar
  4. Ballard, D. (1991). Animate vision. Artificial Intelligence, 48(1), 1–27.MathSciNetCrossRefGoogle Scholar
  5. Balleine, B. W., & Dickinson, A. (1998). Goal-directed instrumental action: Contingency and incentive learning and their cortical substrates. Neuropharmacology, 37(4–5), 407–419.CrossRefGoogle Scholar
  6. Barsalou, L. W. (1999). Perceptual symbol systems. Behavioral and Brain Sciences, 22, 577–600.Google Scholar
  7. Barsalou, L. W. (2003). Abstraction in perceptual symbol systems. Philosophical Transactions of the Royal Society of London. Series B, Biological Sciences, 358(1435), 1177–1187.CrossRefGoogle Scholar
  8. Barsalou, L., Simmons, W. K., Barbey, A., & Wilson, C. (2003). Grounding conceptual knowledge in modality-specific systems. Trends in Cognitive Sciences, 7(2), 84–91.CrossRefGoogle Scholar
  9. Beer, R. (1995). A dynamical systems perspective on agent-environment interaction. Artificial Intelligence, 72, 173–215.CrossRefGoogle Scholar
  10. Beer, R. (1997). The dynamics of adaptive behavior: A research program. Robotics and Autonomous Systems, 20, 257–289.CrossRefGoogle Scholar
  11. Bickhard, M. H. (1998). Levels of representationality. Journal of Experimental and Theoretical Artificial Intelligence, 10(2), 179–215.CrossRefGoogle Scholar
  12. Bickhard, M. H. (2001). Function, anticipation and representation. In D. M. Dubois, (Ed.), Computing Anticipatory Systems. CASYS 2000 – Fourth International Conference (pp. 459–469). Melville, NY. American Institute of Physics.Google Scholar
  13. Bickhard, M. H., & Terveen, L. (1995). Foundational issues in artificial intelligence and cognitive science: Impasse and solution. Amsterdam: Elsevier Scientific.Google Scholar
  14. Blakemore, S.-J., & Decety, J. (2001). From the perception of action to the understanding of intention. Nature Reviews Neuroscience, 2, 561–567.Google Scholar
  15. Bongard, J., Zykov, V., & Lipson, H. (2006a). Resilient machines through continuous self-modeling. Science, 314(5802), 1118–1121.CrossRefGoogle Scholar
  16. Bongard, J. C., Zykov, V., & Lipson, H. (2006b). Automated synthesis of body schema using multiple sensor modalities. In Proceedings of the Tenth International Conference on the Simulation and Synthesis of Living Systems (ALIFEX) (pp. 220–226).Google Scholar
  17. Breazeal, C., & Scassellati, B. (1999). A context-dependent attention system for a social robot. In IJCAI ’99: Proceedings of the Sixteenth International Joint Conference on Artificial Intelligence (pp. 1146–1153). Morgan Kaufmann Publishers Inc.Google Scholar
  18. Brentano, F. (1985). Psychology from an Empirical Standpoint (trans: Rancurello, A. C., Terrell, D. B., & McAlister, L. L.). London: Routledge.Google Scholar
  19. Brooks, R. A. (1991). Intelligence without representation. Artificial Intelligence, 47(47), 139–159.CrossRefGoogle Scholar
  20. Butz, M. V. (2002). Anticipatory learning classifier systems. Boston, MA: Kluwer Academic Publishers.MATHGoogle Scholar
  21. Butz, M. V., Sigaud, O., & Gérard, P. (2003). Internal models and anticipations in adaptive learning systems. In M. V. Butz, O. Sigaud, & P. Gérard (Eds.), Anticipatory behavior in adaptive learning systems: Foundations, theories, and systems (pp. 86–109). Berlin Heidelberg: Springer-Verlag.Google Scholar
  22. Camazine, S., Franks, N. R., Sneyd, J., Bonabeau, E., Deneubourg, J.-L., & Theraula, G. (2001). Self-organization in biological systems. Princeton, NJ, USA: Princeton University Press.Google Scholar
  23. Cangelosi, A. (2006). The grounding and sharing of symbols. Pragmatics and Cognition, 14, 275–285.CrossRefGoogle Scholar
  24. Carlsson, K., Petrovic, P., Skare, S., Petersson, K. M., & Ingvar, M. (2000). Tickling expectations: Neural processing in anticipation of a sensory stimulus. Journal of Cognitive Neuroscience, 12(4), 691–703.CrossRefGoogle Scholar
  25. Carpenter, G. A., & Grossberg, S. (1988). The art of adaptive pattern recognition by a self-organizing neural network. Computer, 21(3), 77–88.CrossRefGoogle Scholar
  26. Castelfranchi, C. (2005). Mind as an anticipatory device: For a theory of expectations. In BVAI 2005, pp. 258–276.Google Scholar
  27. Chalmers, D. (1996). The conscious mind. Oxford University Press, New York. Tr. It., La mente cosciente, McGraw- Hill, 1999.Google Scholar
  28. Chiel, H. J., & Beer, R. D. (1997). The brain has a body: Adaptive behavior emerges from interactions of nervous system, body and environment. Trends in Neurosciences, 20, 553–557.CrossRefGoogle Scholar
  29. Churchland, P. (1992). A neurocomputational perspective: The nature of mind and the structure of science. Cambridge, MA: MIT Press.Google Scholar
  30. Cisek, P., & Kalaska, J. (2001). Common codes for situated interaction. Behavioral and Brain Sciences, 24(5), 883–884.Google Scholar
  31. Clark, A. (1998). Being there. Putting brain, body, and world together. MIT Press.Google Scholar
  32. Clark, A., & Chalmers, D. J. (1998). The extended mind. Analysis, 58, 10–23.CrossRefGoogle Scholar
  33. Clark, A., & Grush, R. (1999). Towards a cognitive robotics. Adaptive Behavior, 7(1), 5–16.CrossRefGoogle Scholar
  34. Colombo, M., & Graziano, M. (1994). Effects of auditory and visual interference on auditory-visual delayed matching to sample in monkeys (maca fascicularis). Behavioral Neuroscience, 108, 636–639.CrossRefGoogle Scholar
  35. Conte, R., & Castelfranchi, C. (1995). Cognitive and social action. London, UK: University College London.Google Scholar
  36. Cotterill, R. (1998). Enchanted looms: Conscious networks in brains and computers. Cambridge University Press.Google Scholar
  37. Cotterill, R. (2001). Cooperation of the basal ganglia, cerebellum, sensory cerebrum and hippocampus: Possible implications for cognition, consciousness, intelligence and creativity. Progress in Neurobiology, 64, 1–33.CrossRefGoogle Scholar
  38. Craik, K. (1943). The nature of explanation. Cambridge: Cambridge University Press.Google Scholar
  39. Damasio, A. R. (1994). Descartes’ error: Emotion, reason and the human brain. New York: Grosset/Putnam.Google Scholar
  40. Dautenhahn, K., & Nehaniv, C. (2002). Imitation in animals and artifacts. MIT Press.Google Scholar
  41. Decety, J. (1996). Do imagined and executed actions share the same neural substrate? Brain Research. Cognitive Brain Research, 3, 87–93.CrossRefGoogle Scholar
  42. Decety, J., & Chaminade, T. (2003). When the self represents the other: A new cognitive neuroscience view on psychological identification. Consciousness and Cognition, 12(20), 577–596.CrossRefGoogle Scholar
  43. Decety, J., Grèzes, J., Costes, N., Perani, D., Jeannerod, M., Procyk, E., Grassi, F., & Fazio, F. (1997). Brain activity during observation of actions. influence of action content and subject’s strategy. Brain, 120(Pt 10), 1763–1777.CrossRefGoogle Scholar
  44. Decety, J., Jeannerod, M., & Prablanc, C. (1989). The timing of mentally represented actions. Behavioural Brain Research, 34(1–2), 35–42.CrossRefGoogle Scholar
  45. Delcomyn, F. (1980). Neural basis for rhythmic behaviour in animals. Science, 210, 492–498.CrossRefGoogle Scholar
  46. Demiris, Y. (2007). Prediction of intent in robotics and multi-agent systems. Cognitive Processing, 8(3), 151–158.CrossRefGoogle Scholar
  47. Demiris, J., & Hayes, G. (1996). Imitative learning mechanisms in robots and humans. In Proceedingsof the 5th European Workshop on Learning Robot, pp. 9–16.Google Scholar
  48. Demiris, Y., & Khadhouri, B. (2005). Hierarchical attentive multiple models for execution and recognition (hammer). Robotics and Autonomous Systems Journal, 54, 361–369.CrossRefGoogle Scholar
  49. Dennett, D. C. (1991). Consciousness explained. Little, Brown & Co.Google Scholar
  50. Desmurget, M., & Grafton, S. (2000). Forward modeling allows feedback control for fast reaching movements. Trends in Cognitive Sciences, 4, 423–431.CrossRefGoogle Scholar
  51. Dewey, J. (1896). The reflex arc concept in psychology. Psychological Review, 3, 357–370.CrossRefGoogle Scholar
  52. Doya, K. (1996). Temporal difference learning in continuous time and space. In D. S. Touretzky, M. C. Mozer, & M. E. Hasselmo (Eds.), Advances in neural information processing systems (Vol. 8, pp. 1073–1079). The MIT Press.Google Scholar
  53. Drescher, G. L. (1991). Made-up minds: A constructivist approach to artificial intelligence. Cambridge, MA: MIT Press.MATHGoogle Scholar
  54. Dunker, K. (1935). Psychology des produktiven Denkens. Berlin: Springer.Google Scholar
  55. Edelman, G. M. (1987). Neural Darwinism: The Theory of Neuronal Group Selection. New York: Basic BooksGoogle Scholar
  56. Elman, J. L. (1990). Finding structure in time. Cognitive Science, 14(2), 179–211.CrossRefGoogle Scholar
  57. Fleischer, J. G. (2007). Neural correlates of anticipation in cerebellum, basal ganglia, and hippocampus. In M. Butz, O. Sigaud, G. Pezzulo, & G. Baldassarre (Eds.), Anticipatory behavior in adaptive learning systems: Advances in anticipatory processing, LNAI 4520. Springer.Google Scholar
  58. Fodor, J. (1975). The language of thought. Cambridge, MA: Harvard University Press.Google Scholar
  59. Fodor, J. A. (1980). Methodological solipsism considered as a research strategy in cognitive psychology. Behavioral and Brain Sciences, 3, 63–109.Google Scholar
  60. Fogassi, L., Ferrari, P., Chersi, F., Gesierich, B., Rozzi, S., & Rizzolatti, G. (2005). Parietal lobe: From action organization to intention understanding. Science, 308, 662–667.CrossRefGoogle Scholar
  61. Friston, K. (2003). Learning and inference in the brain. Neural Networks, 16(9), 1325–1352.CrossRefGoogle Scholar
  62. Frith, C. (2007). Making up the mind. How the brain creates our mental world. Blackwell.Google Scholar
  63. Frith, C. D., & Frith, U. (2006). How we predict what other people are going to do. Brain Research, 1079(1), 36–46.CrossRefGoogle Scholar
  64. Gallagher, S., & Jeannerod, M. (2002). From action to interaction. Journal of Consciousness Studies, 9(24), 3–26.Google Scholar
  65. Gallese, V. (2000). The inner sense of action: Agency and motor representations. Journal of Consciousness Studies, 7, 23–40.Google Scholar
  66. Gallese, V. (2001). The ’shared manifold’ hypothesis. from mirror neurons to empathy. Journal of Consciousness Studies, 8, 5–87.Google Scholar
  67. Gallese, V., & Goldman, A. (1998). Mirror neurons and the simulation theory of mind-reading. Trends in Cognitive Sciences, 2(12), 493–501.CrossRefGoogle Scholar
  68. Gallese, V., & Lakoff, G. (2005). The brain’s concepts: The role of the sensory-motor system in reason and language. Cognitive Neuropsychology, 22, 455–479.CrossRefGoogle Scholar
  69. Gallese, V., & Metzinger, T. (2003). Motor ontology: The representational reality of goals, actions, and selves. Philosophical Psychology, 13(3), 365–388.CrossRefGoogle Scholar
  70. Gardenfors, P. (2004). Cooperation and the evolution of symbolic communication. In K. Oller & U. Griebel (Eds.), Evolution of communication systems: A comparative approach (pp. 237–256). Cambridge, MA: MIT Press.Google Scholar
  71. Gardenfors, P., & Orvath, M. (2005). The evolution of anticipatory cognition as a precursor to symbolic communication. In S. Brook (Ed.), Proceedings of the Morris Symposium on the Evolution of Language, NY, USA.Google Scholar
  72. Gattis, M. (2001). Spatial schemas in abstract thought. Cambridge: MIT Press.Google Scholar
  73. Gers, F. A., Schraudolph, N. N., & Schmidhuber, J. (2003). Learning precise timing with lstm recurrent networks. Journal of Machine Learning Research, 3, 115–143.MathSciNetCrossRefMATHGoogle Scholar
  74. Ghez, C., & Thach, W. T. (2000). Principles of neural science, chapter The cerebellum (4th ed., pp. 833–835). New York: McGraw-Hill.Google Scholar
  75. Gibson, J. (1966). The senses considered as perceptual systems. Boston, MA: Houghton Mifflin.Google Scholar
  76. Gibson, J. (1979). The ecological approach to visual perception. Mahwah, NJ: Lawrence Erlbaum Associates, Inc.Google Scholar
  77. Glenberg, A. (1997). What memory is for. Behavioral and Brain Sciences, 20, 1–55.Google Scholar
  78. Goldman, A. (2005). Imitation, mind reading, and simulation. In S. Hurley & N. Chater (Eds.), Perspectives on imitation II (pp. 80–81). Cambridge, MA: MIT Press.Google Scholar
  79. Gorniak, P., & Roy, D. (2007). Situated language understanding as filtering perceived affordances. Cognitive Science, 31(2), 197–231.Google Scholar
  80. Greenwald, A. G. (1970). Sensory feedback mechanisms in performance control: With special reference to the ideomotor mechanism. Psychological Review, 77, 73–99.CrossRefGoogle Scholar
  81. Gross, H.-M., Volker, S., & Torsten, S. (1999). A neural architecture for sensorimotor anticipation. Neural Networks, 12, 1101–1129.CrossRefGoogle Scholar
  82. Grush, R. (1997). The architecture of representation. Philosophical Psychology, 10(1), 5–25.CrossRefGoogle Scholar
  83. Grush, R. (2004). The emulation theory of representation: Motor control, imagery, and perception. Behavioral and Brain Sciences, 27(3), 377–396.Google Scholar
  84. Gurney, K., Prescott, T., & Redgrave, P. (2001). A computational model of action selection in the basal ganglia, i. a new functional anatomy. Biological Cybernetics, 84, 401–410.CrossRefMATHGoogle Scholar
  85. Haken, H. (1988). Information and self-organization, a macroscopic approach to complex systems. Berlin/New York: Springer-Verlag.MATHGoogle Scholar
  86. Harnad, S. (1990). The symbol grounding problem. Physica D: Nonlinear Phenomena, 42, 335–346.CrossRefGoogle Scholar
  87. Haruno, M., Wolpert, D., & Kawato, M. (2003). Hierarchical mosaic for movement generation. In T. Ono, G. Matsumoto, R. Llinas, A. Berthoz, H. Norgren, & R. Tamura (Eds.) Excepta medica international coungress series. Amsterdam: Elsevier Science.Google Scholar
  88. Heidegger, M. (1977). Sein und Zeit. Tübingen: Niemeyer.Google Scholar
  89. Hesslow, G. (2002). Conscious thought as simulation of behaviour and perception. Trends in Cognitive Sciences, 6, 242–247.CrossRefGoogle Scholar
  90. Hoffmann, H. (2007). Perception through visuomotor anticipation in a mobile robot. Neural Networks, 20, 22–33.CrossRefMATHGoogle Scholar
  91. Hoffmann, H., & Moller, R. (2004). Action selection and mental transformation based on a chain of forward models. In S. Schaal, A. Ijspeert, A. Billard, S. Vijayakumar, J. Hallam, & J.-A. Meyer (Eds.), From Animals to Animats 8, Proceedings of the Eighth International Conference on the Simulation of Adaptive Behavior (pp. 213–222). Los Angeles, CA: MIT Press.Google Scholar
  92. Hoffmann, J. (1993). Vorhersage und Erkenntnis: Die Funktion von Antizipationen in der menschlichen Verhaltenssteuerung und Wahrnehmung [Anticipation and cognition: The function of anticipations in human behavioral control and perception]. Goettingen, Germany: Hogrefe.Google Scholar
  93. Hoffmann, J., Stöcker, C., & Kunde, W. (2004). Anticipatory control of actions. International Journal of Sport and Exercise Psychology, 2, 346–361.Google Scholar
  94. Hommel, B. (2003). Planning and representing intentional action. The Scientific World Journal, 3, 593–608.Google Scholar
  95. Hommel, B., Musseler, J., Aschersleben, G., & Prinz, W. (2001). The theory of event coding (tec): A framework for perception and action planning. Behavioral and Brain Science, 24(5), 849–878.CrossRefGoogle Scholar
  96. Houk, J. C., & Wise, S. P. (1995). Distributed modular architectures linking basal ganglia, cerebellum, and cerebral cortex: Their role in planning and controlling action. Cerebral Cortex, 5(2), 95–110.CrossRefGoogle Scholar
  97. Hurley, S. L. (2005). Active perception and perceiving action: The shared circuits hypothesis. In T. Gendler & J. Hawthorne (Eds.), Perceptual experience. Oxford: Oxford University Press.Google Scholar
  98. Hurley, S., & Chater, N. (2004). Perspectives on imitation: From cognitive neuroscience to social science. Cambridge, MA: MIT Press.Google Scholar
  99. Husserl, E. (1982). Ideas pertaining to a pure phenomenology and to a phenomenological philosophy. Nijhoff: The Hague.Google Scholar
  100. Iacoboni, M. (2002). Modulation of motor and premotor activity during imitation of target-directed actions. Cereb Cortex, 12, 847–855.CrossRefGoogle Scholar
  101. Iacoboni, M. (2003). Understanding others: Imitation, language, empathy. In S. Hurley & N. Chater (Eds.), Perspectives on imitation: From cognitive neuroscience to social science. Cambridge, MA: MIT Press.Google Scholar
  102. Jacobs, R., Jordan, M., Nowlan, S., & Hinton, G. (1991). Adaptive mixtures of local experts. Neural Computation, 3, 79–87.CrossRefGoogle Scholar
  103. James, W. (1890). The principles of psychology. New York: Dover Publications.Google Scholar
  104. James, M., Singh, S., & Littman, M. (2004). Planning with predictive state representations. In Proceedings of the International Conference on Machine Learning and Applications (pp. 304–311).Google Scholar
  105. Jeannerod, M. (1979). Visuomotor experiments: Failure to replicate, or failure to match the theory? Behavioral and Brain Sciences, 2, 71.Google Scholar
  106. Jeannerod, M. (1994). The representing brain: Neural correlates of motor intention and imagery. The Behavioral and Brain Sciences, 17, 187–245.Google Scholar
  107. Jeannerod, M. (1997). The cognitive neuroscience of action. Oxford: Blackwell.Google Scholar
  108. Jeannerod, M. (2001). Neural simulation of action: A unifying mechanism for motor cognition. NeuroImage, 14, S103–S109.CrossRefGoogle Scholar
  109. Jeannerod, M., & Decety, J. (1995). Mental motor imagery: A window into the representational stages of action. Current Opinion in Neurobiology, 5(6), 727–732.CrossRefGoogle Scholar
  110. Jeannerod, M., & Pacherie, E. (2004). Agency, simulation, and self-identification. Mind and Language, 19(2), 113–146.CrossRefGoogle Scholar
  111. Johnson, M., & Demiris, Y. (2005a). Hierarchies of coupled inverse and forward models for abstraction in robot action planning, recognition and imitation. In Proceedings of the AISB 2005 Symposium on Imitation in Animals and Artifacts (pp. 69–76). Hertfordshire, UK.Google Scholar
  112. Johnson, M., & Demiris, Y. (2005b). Perceptual perspective taking and action recognition. International Journal of Advanced Robotic Systems, 2(4), 301–309.Google Scholar
  113. Johnson-Laird, P. (1983). Mental models: Towards a cognitive science of language, inference, and consciousness. Cambridge: Cambridge University Press and Harvard University Press.Google Scholar
  114. Jordan, M. I., & Rumelhart (1992). Forward models: Supervised learning with a distal teacher. Cognitive Science, 16, 307–354.CrossRefGoogle Scholar
  115. Kant, I. (1781/1998). Critique of pure reason. Cambridge: Cambridge University Press.Google Scholar
  116. Kaplan, F., & Hafner, V. (2006). The challenges of joint attention. Interaction Studies, 7(2).Google Scholar
  117. Kauffman, S. A. (1993). The origins of order: Self-organization and selection in evolution. New York: Oxford University Press.Google Scholar
  118. Kawato, M. (1990). Computational schemes and neural network models for formulation and control of multijoint arm trajectories. In W. T. Miller, R. S. Sutton, & P. J. Werbos (Eds.), Neural Networks for Control (pp. 197–228). Cambridge, MA: MIT Press.Google Scholar
  119. Kawato, M. (1999). Internal models for motor control and trajectory planning. Current Opinion in Neurobiology, 9, 718–727.CrossRefGoogle Scholar
  120. Keijzer, F. (2001). Representation and behavior. Cambridge, MA: MIT Press.Google Scholar
  121. Kelso, J. A. (1991). Anticipatory dynamical systems, intrinsic pattern dynamics and skill learning. Human Movement Science, 10(1), 93–111.CrossRefGoogle Scholar
  122. Kelso, J. A. S. (1995). Dynamic patterns: The self-organization of brain and behavior. Cambridge, Mass: MIT Press.Google Scholar
  123. Knoblich, G., & Prinz, W. (2005). Higher-order motor disorders, chapter Linking perception and action: An ideomotor approach (pp. 79–104). Oxford, UK: Oxford University Press.Google Scholar
  124. Kondo, T., & Ito, K. (2006). A design principle of adaptive neural controllers for realizing anticipatory behavior in reaching movement under unexperienced environments. In M. Butz, O. Sigaud, G. Pezzulo, & G. Baldassarre, (Eds.), Proceedings of the Third Workshop on Anticipatory Behavior in Adaptive Learning Systems (ABiALS 2006).Google Scholar
  125. Kording, K., & Wolpert, D. (2006). Bayesian decision theory in sensorimotor control. Trends in Cognitive Sciences, 10, 319–326.CrossRefGoogle Scholar
  126. Kosslyn, S. M., & Sussman, A. (1994). Roles of imagery in perception: Or, there is no such thing as immaculate perception. In M. Gazzaniga (Ed.), The cognitive neurosciences (pp. 1035–1042). Cambridge, MA: MIT Press.Google Scholar
  127. Kuipers, B., Beeson, P., Modayil, J., & Provost, J. (2006). Bootstrap learning of foundational representations. Connection Science (accepted for publication), 18(2).Google Scholar
  128. Kunde, W., Koch, I., & Hoffmann, J. (2004). Anticipated action effects affect the selection, initiation and execution of actions. The Quarterly Journal of Experimental Psychology. Section A: Human Experimental Psychology, 57(1), 87–106.CrossRefGoogle Scholar
  129. Lakoff, G. (1987). Women, fire, and dangerous things: What categories reveal about the mind. Chicago: University of Chicago Press.Google Scholar
  130. Lakoff, G., & Johnson, M. (1999). Philosophy in the flesh: The embodied mind and its challenge to western thought. Basic Books.Google Scholar
  131. Landauer, T. K. (1962). Rate of implicit speech. Perceptual and Motor Skills, 15, 646.Google Scholar
  132. Littman, M., Sutton, R., & Singh, S. (2001). Predictive representations of state. In Proceedings of NIPS-02, Vancouver.Google Scholar
  133. Lu, X., & Ashe, J. (2005). Anticipatory activity in primary motor cortex codes memorized movement sequences. Neuron, 45(6), 967–973.CrossRefGoogle Scholar
  134. Lungarella, M., Metta, G., Pfeifer, R., & Sandini, G. (2004). Developmental robotics: A survey. Connection Science, 0(0), 1–40.Google Scholar
  135. Maravita, A., Spence, C., & Driver, J. (2003). Multisensory integration and the body schema: Close to hand and within reach. Current Biology, 13(13), R531–R539.CrossRefGoogle Scholar
  136. Markman, A. B., & Dietrich, E. (2000). Extending the classical view of representation. Trends in Cognitive Sciences, 4(12), 470–475.CrossRefGoogle Scholar
  137. Maturana, H. R., & Varela, F. J. (1980). Autopoiesis and cognition: The realization of living. Dordrecht, Holland: D. Reidel Pub.Google Scholar
  138. Mehta, B., & Schaal, S. (2002). Forward models in visuomotor control. Journal of Neurophysiology, 88, 942–953.Google Scholar
  139. Mel, B. (1990). Vision-based robot motion planning. In W. T. Miller III, R. S. Sutton, & P. Werbos (Eds.), Neural Networks for Control. Bradford: MIT.Google Scholar
  140. Meltzoff, A., & Prinz, W. (2002). The imitative mind: Development, evolution and brain bases. Cambridge University Press, Cambridge.Google Scholar
  141. Merleau-Ponty, M. (1945). Phénoménologie de la perception. Paris: Gallimard.Google Scholar
  142. Miall, R. C., & Wolpert, D. M. (1996). Forward models for physiological motor control. Neural Networks, 9(8), 1265–1279.CrossRefMATHGoogle Scholar
  143. Middleton, F. A., & Strick, P. L. (2000). Basal ganglia output and cognition: Evidence from anatomical, behavioral, and clinical studies. Brain and Cognition, 42(2), 183–200.CrossRefGoogle Scholar
  144. Miller, G. A., Galanter, E., & Pribram, K. H. (1960). Plans and the structure of behavior. New York: Holt, Rinehart and Winston.Google Scholar
  145. Mohan, V., & Morasso, P. (2006). A forward/inverse motor controller for cognitive robotics. In Proceedings of the International Conference on Artifical Neural Networks (pp. 602–611).Google Scholar
  146. Neisser, U. (1976). Cognition and reality. San Francisco, CA: Freeman.Google Scholar
  147. Newell, A. (1990). Unified theories of cognition. Cambridge, MA: Harvard University Press.Google Scholar
  148. Nolfi, S. (2002). Power and limits of reactive agents. Neurocomputing, 49, 119–145.CrossRefGoogle Scholar
  149. Nolfi, S. (2005). Behaviour as a complex adaptive system: On the role of self-organization in the development of individual and collective behaviour. ComplexUs, 2, 195–203.CrossRefGoogle Scholar
  150. O’Regan, J., & Noe, A. (2001). A sensorimotor account of vision and visual consciousness. Behavioral and Brain Sciences, 24(5), 883–917.Google Scholar
  151. Oudeyer, P.-Y., Kaplan, F., Hafner, V. V., & Whyte, A. (2005). The playground experiment: Task-independent development of a curious robot. In D. Bank & L. Meeden (Eds.), Proceedings of the AAAI Spring Symposium on Developmental Robotics, 2005 (pp. 42–47). Stanford, California.Google Scholar
  152. Pacherie, E., & Dokic, J. (2006). From mirror neurons to joint actions. Cognitive Systems Research, 7(2–3), 101–112.CrossRefGoogle Scholar
  153. Paine, R. W., & Tani, J. (2005). How hierarchical control self-organizes in artificial adaptive systems. Adaptive Behavior, 13(3), 211–225.CrossRefGoogle Scholar
  154. Peirce, C. S. (1897/1940). Philosophical writings of Peirce, chapter Logic as semiotic: The theory of signs. Dover.Google Scholar
  155. Pezzulo, G. (2006). How can a massively modular mind be context-sensitive? A computational approach. In Proceedings of the 7th International Conference on Cognitive Modeling 2006.Google Scholar
  156. Pezzulo, G., Baldassarre, G., Butz, M. V., Castelfranchi, C., & Hoffmann, J. (2007). From actions to goals and vice-versa: Theoretical analysis and models of the ideomotor principle and tote. In M. Butz, O. Sigaud, G. Pezzulo, & G. Baldassarre (Eds.), Anticipatory behavior in adaptive learning systems: Advances in anticipatory processing, LNAI 4520. Springer.Google Scholar
  157. Pezzulo, G., & Calvi, G. (2006a). A schema based model of the praying mantis. In S. Nolfi, G. Baldassarre, R. Calabretta, J. Hallam, D. Marocco, O. Miglino, J.-A. Meyer, & D. Parisi (Eds.), From Animals to Animats 9: Proceedings of the Ninth International Conference on Simulation of Adaptive Behaviour, volume LNAI 4095 (pp. 211–223). Berlin, Germany: Springer Verlag.Google Scholar
  158. Pezzulo, G., & Calvi, G. (2006b). Toward a perceptual symbol system. In Proceedings of the Sixth International Conference on Epigenetic Robotics: Modeling Cognitive Development in Robotic Systems. Lund University Cognitive Science Studies 118.Google Scholar
  159. Pezzulo, G., & Calvi, G. (2007). Schema-based design and the akira schema language: An overview. In M. Butz, O. Sigaud, G. Pezzulo, & G. Baldassarre (Eds.), Anticipatory behavior in adaptive learning systems: Advances in anticipatory processing, LNAI 4520. Springer.Google Scholar
  160. Pezzulo, G., Calvi, G., Ognibene, D., & Lalia, D. (2005). Fuzzy-based schema mechanisms in akira. In CIMCA ’05: Proceedings of the International Conference on Computational Intelligence for Modelling, Control and Automation and International Conference on Intelligent Agents, Web Technologies and Internet Commerce (Vol. 2, pp. 146–152). Washington, DC, USA: IEEE Computer Society.Google Scholar
  161. Pezzulo, G., & Castelfranchi, C. (2007). The symbol detachment problem. Cognitive Processing, 8(2), 115–131.CrossRefGoogle Scholar
  162. Pfeifer, R., & Scheier, C. (1999). Understanding intelligence. Cambridge, MA: MIT Press.Google Scholar
  163. Piaget, J. (1954). The construction of reality in the child. Ballentine.Google Scholar
  164. Piaget, J. (1985). Equilibration of cognitive structures. University of Chicago Press.Google Scholar
  165. Pierce, D. M., & Kuipers, B. J. (1997). Map learning with uninterpreted sensors and effectors. Artificial Intelligence, 92, 169–227.CrossRefMATHGoogle Scholar
  166. Popper, K. R. (1996). Alles Leben ist Problemlösen. Über Erkenntnis, Geschichte und Politik. München: R. Piper-Verlag.Google Scholar
  167. Port, R., & van Gelder, T. (1995). Mind as motion: Explorations in the dynamics of cognition. Cambridge MA: MIT Press.Google Scholar
  168. Prinz, W. (1990). A common coding approach to perception and action. In O. Neumann & W. Prinz (Eds.), Relationships between perception and action (pp. 167–201). Berlin: Springer Verlag.Google Scholar
  169. Prinz, W. (2005). An ideomotor approach to imitation. In S. Hurley & N. Chater (Eds.), Perspectives on imitation: From neuroscience to social science (Vol. 1, pp. 141–156). Cambridge, MA: MIT Press.Google Scholar
  170. Rainer, G., Rao, S. C., & Miller, E. K. (1999). Prospective coding for objects in primate prefrontal cortex. The Journal of Neuroscience, 19(13), 5493–5505.Google Scholar
  171. Rao, R. P., & Ballard, D. H. (1999). Predictive coding in the visual cortex: A functional interpretation of some extra-classical receptive-field effects. Nature Neuroscience, 2(1), 79–87.CrossRefGoogle Scholar
  172. Riesenhuber, M., & Poggio, T. (1999). Hierarchical models of object recognition in cortex. Nature Neuroscience, 2(11), 1019–1025.CrossRefGoogle Scholar
  173. Rizzolatti, G., & Arbib, M. A. (1998). Language within our grasp. Trends in Neurosciences, 21(5), 188–194.CrossRefGoogle Scholar
  174. Rizzolatti, G., & Craighero, L. (2004). The mirror-neuron system. Annual Review of Neuroscience, 27, 169–192.CrossRefGoogle Scholar
  175. Rizzolatti, G., Fadiga, L., Gallese, V., & Fogassi, L. (1996). Premotor cortex and the recognition of motor actions. Cognitive Brain Research, 3.Google Scholar
  176. Rizzolatti, G., Fogassi, L., & Gallese, V. (2001). Neurophysiological mechanisms underlying the understanding and imitation of action. Nature Reviews Neuroscience, 2, 661–670.CrossRefGoogle Scholar
  177. Roitblat, H. (1980). Codes and coding processes in pigeon short-term memory. Animal Learning & Behavior, 8, 341–351.Google Scholar
  178. Rosen, R. (1985). Anticipatory systems. Pergamon Press.Google Scholar
  179. Rosenblueth, A., Wiener, N., & Bigelow, J. (1943). Behavior, purpose and teleology. Philosophy of Science, 10(1), 18–24.CrossRefGoogle Scholar
  180. Roy, D. (2005). Semiotic schemas: A framework for grounding language in action and perception. Artificial Intelligence, 167(1–2), 170–205.CrossRefGoogle Scholar
  181. Roy, D., yuh Hsiao, K., Mavridis, N., & Gorniak, P. (2006). Ripley, hand me the cup: Sensorimotor representations for grounding word meaning. In International Conference of Automatic Speech Recognition and Understanding.Google Scholar
  182. Ruby, P., & Decety, J. (2001). Effect of subjective perspective taking during simulation of action: A pet investigation of agency. Nature Neuroscience, 4(5), 546–550.Google Scholar
  183. Ryle, G. (1949). The concept of mind. New York: Barnes and Noble.Google Scholar
  184. Scassellati, B. (1999). Imitation and mechanisms of joint attention: A developmental structure for building social skills on a humanoid robot. Lecture Notes in Computer Science, 1562, 176–195.CrossRefGoogle Scholar
  185. Schenck, W., & Moller, R. (2006). Learning a visual forward model for a robot camera head. In M. Butz, O. Sigaud, G. Pezzulo, & G. Baldassarre (Eds.), Proceedings of the Third Workshop on Anticipatory Behavior in Adaptive Learning Systems (ABiALS 2006).Google Scholar
  186. Schmidhuber, J. (1991). Adaptive confidence and adaptive curiosity. Technical Report FKI-149-91, Institut für Informatik, Technische Universitat.Google Scholar
  187. Schmidhuber, J. (2002). Exploring the predictable. In S. Ghosh & S. Tsutsui (Eds.), Advances in evolutionary computing (pp. 579–612). Springer.Google Scholar
  188. Schomaker, L. (2004). Anticipation in cybernetic systems: A case against mindless anti-representationalism. In IEEE lntemational Conference on Systems, Man and Cybernetics, pp. 2037–2045.Google Scholar
  189. Schöner, G. (2002). Dynamical systems approaches to neural systems and behavior. In N. J. Smelser & P. B. Baltes (Eds.), International encyclopedia of the social & behavioral sciences (pp. 10571–10575). Pergamon: Oxford.Google Scholar
  190. Schöner, G., & Kelso, J. A. S. (1988). Dynamic pattern generation in behavioral and neural systems. Science, 239, 1513–1520.CrossRefGoogle Scholar
  191. Schubotz, R. I. (2007). Prediction of external events with our motor system: Towards a new framework. Trends in Cognitive Sciences, 11(5), 211–218.CrossRefGoogle Scholar
  192. Schultz, W., Dayan, P., & Montague, P. (1997). A neural substrate of prediction and reward. Science, 275, 1593–1599.CrossRefGoogle Scholar
  193. Shanahan, M. (2005). Cognition, action selection, and inner rehearsal. In Proceedings IJCAI 2005 Workshop on Modelling Natural Action Selection, pp. 92–99.Google Scholar
  194. Simons, D. J., & Levin, D. T. (1997). Change blindness. Trends in Cognitive Sciences, 1(7), 261–267.CrossRefGoogle Scholar
  195. Sloman, A. (2006). Orthogonal recombinable competences acquired by altricial species. Technical report, University of Birmingham.Google Scholar
  196. Steels, L. (2003). Intelligence with representation. Philosophical Transactions: Mathematical, Physical and Engineering Sciences, 361(1811), 2381–2395.MathSciNetCrossRefGoogle Scholar
  197. Stephan, V., & Gross, H.-M. (2003). Visuomotor anticipation – a powerful approach to behavior-driven perception. Künstliche Intelligenz, 17(2), 12–17.Google Scholar
  198. Stern, D. (2004). The present moment. New York, London: W.W. Norton & Company.Google Scholar
  199. Sutton, R. S. (1988). Learning to predict by the methods of temporal differences. Machine Learning, 3, 9–44.Google Scholar
  200. Sutton, R. S., & Barto, A. G. (1981). Toward a modern theory of adaptive networks: Expectation and prediction. Psychological Review, 88(2), 135–170.CrossRefGoogle Scholar
  201. Tani, J. (2003). Learning to generate articulated behavior through the bottom-up and the top-down interaction processes. Neural Networks, 16(1), 11–23.CrossRefGoogle Scholar
  202. Tani, J., Ito, M., & Sugita, Y. (2004). Self-organization of distributedly represented multiple behavior schemata in a mirror system: Reviews of robot experiments using rnnpb. Neural Networks, 17(8–9), 1273–1289.CrossRefGoogle Scholar
  203. Tani, J., & Nolfi, S. (1999). Learning to perceive the world as articulated: An approach for hierarchical learning in sensory-motor systems. Neural Networks, 12(7–8), 1131–1141.CrossRefGoogle Scholar
  204. Taylor, C. (1971). What is involved in a genetic psychology? In T. Mischel (Ed.), Cognitive development and epistemology (pp. 393–416). New York: Academic Press.Google Scholar
  205. Thelen, E., & Smith, L. B. (1994). A dynamic systems approach to the development of perception and action. MIT Press.Google Scholar
  206. Tinbergen, N. (1951). The study of instinct. New York: Oxford University Press.Google Scholar
  207. Tolman, E. (1932). Purposive behavior in animals and men. New York: Appleton-Century-Crofts.Google Scholar
  208. Tomasello, M., Kruger, A., & Ratner, H. (1993). Cultural learning. Behavioral and Brain Sciences, 16, 495–552.CrossRefGoogle Scholar
  209. Toussaint, M. (2006). A sensorimotor map: Modulating lateral interactions for anticipation and planning. Neural Computation, 18(5), 1132–1155.CrossRefMATHGoogle Scholar
  210. Tsoukalas, L. H. (1998). Neurofuzzy approaches to anticipation: A new paradigm for intelligent systems. IEEE Transactions on Systems, Man, and Cybernetics, Part B, 28(4), 573–582.CrossRefGoogle Scholar
  211. van Gelder, T. (1995). What might cognition be, if not computation? Journal of Philosophy, 92(7), 345–381.CrossRefGoogle Scholar
  212. Varela, F. J., Thompson, E. T., & Rosch, E. (1992). The embodied mind: Cognitive science and human experience. The MIT Press.Google Scholar
  213. Vaughan, R. T., & Zuluaga, M. (2006). Use your illusion: Sensorimotor self-simulation allows complex agents to plan with incomplete self-knowledge. In Proceedings of the International Conference on Simulation of Adaptive Behaviour (SAB), Rome, Italy.Google Scholar
  214. Vijayakumar, S., D’souza, A., & Schaal, S. (2005). Incremental online learning in high dimensions. Neural Computation, 17(12), 2602–2634.MathSciNetCrossRefGoogle Scholar
  215. von Holst, E., & Mittelstaedt, H. (1950). Das reafferenzprinzip. Naturwissenschaften, 37, 464–476.CrossRefGoogle Scholar
  216. von Uexküll, J. (1985). Environment [umwelt] and inner world of animals. In G. M. Burghardt (Ed.), Foundations of comparative ethology (pp. 222–245). New York: Van Nostrand Reinhold.Google Scholar
  217. Vygotsky, L. S. (1978). Mind in society: The development of higher psychological processes. Cambridge, MA: Harvard University Press.Google Scholar
  218. Weng, J., & Zhang, Y. (2002). Developmental robots: A new paradigm. In Proceedings Second International Workshop on Epigenetic Robotics.Google Scholar
  219. Wickens, J. (1997). Basal ganglia: Structure and computations. Network: Computation in Neural Systems, 8, R77–R109.CrossRefGoogle Scholar
  220. Witkowski, M. (2003). Towards a four factor theory of anticipatory learning. In M. Butz, O. Sigaud, & P. Gérard (Eds.), Anticipatory behavior in adaptive learning systems, LNAI 2684 (pp. 66–85). Springer.Google Scholar
  221. Wittgenstein, L. (1953). Philosophical investigations. Oxford: Basil Blackwell.Google Scholar
  222. Wohlschlger, A., Gattis, M., & Bekkering, H. (2003). Action generation and action perception in imitation: An instance of the ideomotor principle. Philosophical Transactions of the Royal Society of London, 358, 501–515.CrossRefGoogle Scholar
  223. Wolfe, B., James, M. R., & Singh, S. (2005). Learning predictive state representations in dynamical systems without reset. In ICML ’05: Proceedings of the 22nd International Conference on Machine learning (pp. 980–987). New York, NY, USA: ACM Press.Google Scholar
  224. Wolfe, B., & Singh, S. (2006). Predictive state representations with options. In ICML ’06: Proceedings of the 23rd International Conference on Machine learning (pp. 1025–1032). New York, NY, USA: ACM Press.Google Scholar
  225. Wolpert, D. M. (1997). Computational approaches to motor control. Trends in Cognitive Sciences, 1, 209–216.CrossRefGoogle Scholar
  226. Wolpert, D. M., Doya, K., & Kawato, M. (2003). A unifying computational framework for motor control and social interaction. Philosophical Transactions of the Royal Society of London. Series B, Biological Sciences, 358(1431), 593–602.CrossRefGoogle Scholar
  227. Wolpert, D., & Flanagan, J. (2001). Motor prediction. Current Biology, 11, R729–R732.CrossRefGoogle Scholar
  228. Wolpert, D. M., Gharamani, Z., & Jordan, M. (1995). An internal model for sensorimotor integration. Science, 269, 1179–1182.CrossRefGoogle Scholar
  229. Wolpert, D. M., & Kawato, M. (1998). Multiple paired forward and inverse models for motor control. Neural Networks, 11(7–8), 1317–1329.CrossRefGoogle Scholar
  230. Ziemke, T., Jirenhed, D.-A., & Hesslow, G. (2005). Internal simulation of perception: A minimal neuro-robotic model. Neurocomputing, 68, 85–104.CrossRefGoogle Scholar
  231. Zlatev, J., & Balkenius, C. (2001). Introduction: Why “epigenetic robotics”? In Proceedings of the First International Workshop on Epigenetic Robotics: Modeling Cognitive Development in Robotic Systems (Vol. 85, pp. 1–4). Lund University Cognitive Studies.Google Scholar
  232. Zlatev, J., Persson, T., & Gardenfors, P. (2005). Bodily mimesis as ’the missing link’ in human cognitive evolution. Technical Report LUCS121, Lund University Cognitive Science, Lund, Sweden.Google Scholar

Copyright information

© Springer Science+Business Media B.V. 2008

Authors and Affiliations

  1. 1.Institute of Cognitive Sciences and Technologies - CNRRomeItaly

Personalised recommendations