Skip to main content
Log in

Osmoadaptation in Representatives of Haloalkaliphilic Bacteria from Soda Lakes

  • Experimental Articles
  • Published:
Microbiology Aims and scope Submit manuscript

Abstract

The adaptation of microorganisms to life in brines allows two strategies: the accumulation of organic osmoregulators in the cell (as in many moderate halophiles, halomonads in particular) or the accumulation of inorganic ions at extremely high intracellular concentrations (as, for example, in haloanaerobes). To reveal the regularities of osmoregulation in haloalkaliphiles developing in soda lakes, Halomonas campisalis Z-7398-2 and Halomonas sp. AIR-2 were chosen as representatives of halomonads, and Natroniella acetigena, as a representative of haloanaerobes. It was established that, in alkaliphilic halomonads, the intracellular concentrations of inorganic ions are insufficient for counterbalancing the environmental osmotic pressure and balance is attained due to the accumulation of organic osmoregulators, such as ectoine and betaine. On the contrary, the alkaliphilic haloanaerobe N. acetigena employs K+, Na+, and Cl ions for osmoregulation. High intracellular salt concentrations increasing with the content of Na+ in the medium were revealed in this organism. At a concentration of 1.91 M Na+ in the medium, N. acetigena accumulated 0.83 M K+, 0.91 M Na+, and 0.29 M Cl in cells, and, with an increase in the Na+ content in the medium to 2.59 M, it accumulated 0.94 M K+, 1.98 M Na+, and 0.89 M Cl, which counterbalanced the external osmotic pressure and provided for cell turgor. Thus, it was shown that alkaliphilic microorganisms use osmoregulation strategies similar to those of halophiles and these mechanisms are independent of the mechanism of pH homeostasis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. Oren, A., The Ecology and Taxonomy of Anaerobic Halophilic Bacteria, FEMS Microbiol. Rev., 1986, vol. 39, pp. 23–29.

    Google Scholar 

  2. Galinski, E.A. and Truper, H.G., Microbial Behaviour in Salt-Stressed Ecosystems, FEMS Microbiol. Rev., 1994, vol. 15, pp. 95–108.

    Article  CAS  Google Scholar 

  3. Oren, A., Life at High Salt Concentrations, The Prokaryotes. A handbook on the Biology of Bacteria: Ecophysiology, Isolation, Identification, Applications, 3rd Ed., Dworkin, M. et al., Eds., New York: Springer, 2000 (electronic publication).

    Google Scholar 

  4. Dennis, P.P. and Shimmin, L.C., Evolutionary Divergence and Salinity-Mediated Selection in Halophilic Archaea, Microbiol. Mol. Biol. Rev., 1997, vol. 61, pp. 90–104.

    PubMed  CAS  Google Scholar 

  5. Poolman, B. and Glaasker, E., Regulation of Compatible Solute Accumulation in Bacteria, Mol. Microbiol., 1998, vol. 29, pp. 397–407.

    Article  PubMed  CAS  Google Scholar 

  6. Ventosa, A., Nieto, J.J., and Oren, A., Biology of Aerobic Moderately Halophilic Bacteria, Microbiol. Mol. Biol. Rev., 1998, vol. 62, pp. 504–544.

    PubMed  CAS  Google Scholar 

  7. Zhilina, T.N., Zavarzin, G.A., Detkova, E.N., and Rainey, F.A., Natroniella acetigena gen. nov., sp. nov., an Extremely Haloalkaliphilic, Homoacetic Bacterium: A New Member of Haloanaerobiales, Curr. Microbiol., 1996, vol. 32, pp. 320–326.

    Article  PubMed  CAS  Google Scholar 

  8. Boltyanskaya, Yu.V., Antipov, A.N., Kolganova, T.V., Lysenko, A.M., Kostrikina, N.A., and Zhilina, T.N., Halomonas campisalis, an Obligately Alkaliphilic, Nitrous Oxide-Reducing Denitrifier with a Molybdenum Cofactor-Lacking Nitrate Reductase, Mikrobiologiya, 2004, vol. 73, pp. 326–334.

    Google Scholar 

  9. Manual of Methods for General Bacteriology, Gerhardt, P. et al., Eds., Washington: Am. Soc. Microbiol., 1981.

    Google Scholar 

  10. Fagerbakke, K.M., Norland, S., and Heldal, M., The Inorganic Content of Native Aquatic Bacteria, Can. J. Microbiol., 1999, vol. 45, pp. 304–311.

    Article  PubMed  CAS  Google Scholar 

  11. Vreeland, R.H., Mierau, B.D., Litchfield, C.D., and Martin, E.L., Relationship of the Internal Solute Composition to the Salt Tolerance of Halomonas elongata, Can. J. Microbiol., 1983, vol. 29, pp. 407–414.

    Article  CAS  Google Scholar 

  12. Severin, J., Wohlfarth, A., and Galinski, E.A., The Predominant Role of Recently Discovered Tetrahydropyrimidines for the Osmoadaptation of Halophilic Eubacteria, J. Gen. Microbiol., 1992, vol. 138, pp. 1629–1638.

    CAS  Google Scholar 

  13. Trotsenko, Yu.A. and Khmelenina, V.N., The Biology and Osmoadaptation of Haloalkaliphic Methanotrophs, Mikrobiologiya, 2002, vol. 71, pp. 149–159.

    Google Scholar 

  14. del Moral, A., Severin, J., Ramos-Cormenzana, A., and Truper, H.G., Compatible Solutes in New Moderately Halophilic Isolates, FEMS Microbiol. Lett., 1994, vol. 122, pp. 165–172.

    Google Scholar 

  15. Imhoff, J.F., Survival Strategies of Microorganisms in Extreme Saline Environments, Adv. Space Res., 1986, vol. 6, pp. 299–306.

    Article  PubMed  CAS  Google Scholar 

  16. Kraegeloh, A. and Kunte, H.J., Novel Insights into the Role of Potassium for Osmoregulation in Halomonas elongata, Extremophiles, 2002, vol. 6, pp. 453–462.

    Article  PubMed  CAS  Google Scholar 

  17. Wohlfarth, A., Severin, J., and Galinski, E.A., The Spectrum of Compatible Solutes in Heterotrophic Halophilic Eubacteria of the Family Halomonadaceae, J. Gen. Microbiol., 1990, vol. 136, pp. 705–712.

    CAS  Google Scholar 

  18. Martin, D.D., Ciulla, R.A., and Roberts, M.F., Osmoadaptation in Archaea, Appl. Environ. Microbiol., 1999, vol. 65, pp. 1815–1825.

    PubMed  CAS  Google Scholar 

  19. Oren, A., Bioenergetic Aspects of Halophilism, Microbiol. Mol. Biol. Rev., 1999, vol. 63, pp. 334–348.

    PubMed  CAS  Google Scholar 

  20. Pitryuk, A.V. and Pusheva, M.A., Different Ion Specificities of ATP Synthesis in Extremely Alkaliphilic Sulfate-Reducing and Acetogenic Bacteria, Mikrobiologiya, 2001, vol. 70, pp. 459–464.

    Google Scholar 

  21. Oren, A. and Mana, L., Amino Acid Composition of Bulk Protein and Salt Relationships of Selected Enzymes of Salinibacter ruber, an Extremely Halophilic Bacterium, Extremophiles, 2002, vol. 6, pp. 217–223.

    PubMed  CAS  Google Scholar 

  22. Lanyi, J.K., Salt Dependent Properties of Proteins from Extremely Halophilic Bacteria, Bacteriol. Rev., 1974, vol. 38, pp. 272–290.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yu. V. Boltyanskaya.

Additional information

__________

Translated from Mikrobiologiya, Vol. 74, No. 6, 2005, pp. 738–744.

Original Russian Text Copyright © 2005 by Boltyanskaya, Detkova, Shumskii, Dulov, Pusheva.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Boltyanskaya, Y.V., Detkova, E.N., Shumskii, A.N. et al. Osmoadaptation in Representatives of Haloalkaliphilic Bacteria from Soda Lakes. Microbiology 74, 640–645 (2005). https://doi.org/10.1007/s11021-005-0117-5

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11021-005-0117-5

Key words

Navigation