Advertisement

Microbiology

, Volume 74, Issue 6, pp 640–645 | Cite as

Osmoadaptation in Representatives of Haloalkaliphilic Bacteria from Soda Lakes

  • Yu. V. Boltyanskaya
  • E. N. Detkova
  • A. N. Shumskii
  • L. E. Dulov
  • M. A. Pusheva
Experimental Articles

Abstract

The adaptation of microorganisms to life in brines allows two strategies: the accumulation of organic osmoregulators in the cell (as in many moderate halophiles, halomonads in particular) or the accumulation of inorganic ions at extremely high intracellular concentrations (as, for example, in haloanaerobes). To reveal the regularities of osmoregulation in haloalkaliphiles developing in soda lakes, Halomonas campisalis Z-7398-2 and Halomonas sp. AIR-2 were chosen as representatives of halomonads, and Natroniella acetigena, as a representative of haloanaerobes. It was established that, in alkaliphilic halomonads, the intracellular concentrations of inorganic ions are insufficient for counterbalancing the environmental osmotic pressure and balance is attained due to the accumulation of organic osmoregulators, such as ectoine and betaine. On the contrary, the alkaliphilic haloanaerobe N. acetigena employs K+, Na+, and Cl ions for osmoregulation. High intracellular salt concentrations increasing with the content of Na+ in the medium were revealed in this organism. At a concentration of 1.91 M Na+ in the medium, N. acetigena accumulated 0.83 M K+, 0.91 M Na+, and 0.29 M Cl in cells, and, with an increase in the Na+ content in the medium to 2.59 M, it accumulated 0.94 M K+, 1.98 M Na+, and 0.89 M Cl, which counterbalanced the external osmotic pressure and provided for cell turgor. Thus, it was shown that alkaliphilic microorganisms use osmoregulation strategies similar to those of halophiles and these mechanisms are independent of the mechanism of pH homeostasis.

Key words

soda lakes haloalkaliphiles osmoregulators intracellular ion concentrations 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

REFERENCES

  1. 1.
    Oren, A., The Ecology and Taxonomy of Anaerobic Halophilic Bacteria, FEMS Microbiol. Rev., 1986, vol. 39, pp. 23–29.Google Scholar
  2. 2.
    Galinski, E.A. and Truper, H.G., Microbial Behaviour in Salt-Stressed Ecosystems, FEMS Microbiol. Rev., 1994, vol. 15, pp. 95–108.CrossRefGoogle Scholar
  3. 3.
    Oren, A., Life at High Salt Concentrations, The Prokaryotes. A handbook on the Biology of Bacteria: Ecophysiology, Isolation, Identification, Applications, 3rd Ed., Dworkin, M. et al., Eds., New York: Springer, 2000 (electronic publication).Google Scholar
  4. 4.
    Dennis, P.P. and Shimmin, L.C., Evolutionary Divergence and Salinity-Mediated Selection in Halophilic Archaea, Microbiol. Mol. Biol. Rev., 1997, vol. 61, pp. 90–104.PubMedGoogle Scholar
  5. 5.
    Poolman, B. and Glaasker, E., Regulation of Compatible Solute Accumulation in Bacteria, Mol. Microbiol., 1998, vol. 29, pp. 397–407.PubMedCrossRefGoogle Scholar
  6. 6.
    Ventosa, A., Nieto, J.J., and Oren, A., Biology of Aerobic Moderately Halophilic Bacteria, Microbiol. Mol. Biol. Rev., 1998, vol. 62, pp. 504–544.PubMedGoogle Scholar
  7. 7.
    Zhilina, T.N., Zavarzin, G.A., Detkova, E.N., and Rainey, F.A., Natroniella acetigena gen. nov., sp. nov., an Extremely Haloalkaliphilic, Homoacetic Bacterium: A New Member of Haloanaerobiales, Curr. Microbiol., 1996, vol. 32, pp. 320–326.PubMedCrossRefGoogle Scholar
  8. 8.
    Boltyanskaya, Yu.V., Antipov, A.N., Kolganova, T.V., Lysenko, A.M., Kostrikina, N.A., and Zhilina, T.N., Halomonas campisalis, an Obligately Alkaliphilic, Nitrous Oxide-Reducing Denitrifier with a Molybdenum Cofactor-Lacking Nitrate Reductase, Mikrobiologiya, 2004, vol. 73, pp. 326–334.Google Scholar
  9. 9.
    Manual of Methods for General Bacteriology, Gerhardt, P. et al., Eds., Washington: Am. Soc. Microbiol., 1981.Google Scholar
  10. 10.
    Fagerbakke, K.M., Norland, S., and Heldal, M., The Inorganic Content of Native Aquatic Bacteria, Can. J. Microbiol., 1999, vol. 45, pp. 304–311.PubMedCrossRefGoogle Scholar
  11. 11.
    Vreeland, R.H., Mierau, B.D., Litchfield, C.D., and Martin, E.L., Relationship of the Internal Solute Composition to the Salt Tolerance of Halomonas elongata, Can. J. Microbiol., 1983, vol. 29, pp. 407–414.CrossRefGoogle Scholar
  12. 12.
    Severin, J., Wohlfarth, A., and Galinski, E.A., The Predominant Role of Recently Discovered Tetrahydropyrimidines for the Osmoadaptation of Halophilic Eubacteria, J. Gen. Microbiol., 1992, vol. 138, pp. 1629–1638.Google Scholar
  13. 13.
    Trotsenko, Yu.A. and Khmelenina, V.N., The Biology and Osmoadaptation of Haloalkaliphic Methanotrophs, Mikrobiologiya, 2002, vol. 71, pp. 149–159.Google Scholar
  14. 14.
    del Moral, A., Severin, J., Ramos-Cormenzana, A., and Truper, H.G., Compatible Solutes in New Moderately Halophilic Isolates, FEMS Microbiol. Lett., 1994, vol. 122, pp. 165–172.Google Scholar
  15. 15.
    Imhoff, J.F., Survival Strategies of Microorganisms in Extreme Saline Environments, Adv. Space Res., 1986, vol. 6, pp. 299–306.PubMedCrossRefGoogle Scholar
  16. 16.
    Kraegeloh, A. and Kunte, H.J., Novel Insights into the Role of Potassium for Osmoregulation in Halomonas elongata, Extremophiles, 2002, vol. 6, pp. 453–462.PubMedCrossRefGoogle Scholar
  17. 17.
    Wohlfarth, A., Severin, J., and Galinski, E.A., The Spectrum of Compatible Solutes in Heterotrophic Halophilic Eubacteria of the Family Halomonadaceae, J. Gen. Microbiol., 1990, vol. 136, pp. 705–712.Google Scholar
  18. 18.
    Martin, D.D., Ciulla, R.A., and Roberts, M.F., Osmoadaptation in Archaea, Appl. Environ. Microbiol., 1999, vol. 65, pp. 1815–1825.PubMedGoogle Scholar
  19. 19.
    Oren, A., Bioenergetic Aspects of Halophilism, Microbiol. Mol. Biol. Rev., 1999, vol. 63, pp. 334–348.PubMedGoogle Scholar
  20. 20.
    Pitryuk, A.V. and Pusheva, M.A., Different Ion Specificities of ATP Synthesis in Extremely Alkaliphilic Sulfate-Reducing and Acetogenic Bacteria, Mikrobiologiya, 2001, vol. 70, pp. 459–464.Google Scholar
  21. 21.
    Oren, A. and Mana, L., Amino Acid Composition of Bulk Protein and Salt Relationships of Selected Enzymes of Salinibacter ruber, an Extremely Halophilic Bacterium, Extremophiles, 2002, vol. 6, pp. 217–223.PubMedGoogle Scholar
  22. 22.
    Lanyi, J.K., Salt Dependent Properties of Proteins from Extremely Halophilic Bacteria, Bacteriol. Rev., 1974, vol. 38, pp. 272–290.PubMedGoogle Scholar

Copyright information

© MAIK "Nauka/Interperiodica" 2005

Authors and Affiliations

  • Yu. V. Boltyanskaya
    • 1
  • E. N. Detkova
    • 1
  • A. N. Shumskii
    • 2
  • L. E. Dulov
    • 1
  • M. A. Pusheva
    • 1
  1. 1.Winogradsky Institute of MicrobiologyRussian Academy of SciencesMoscowRussia
  2. 2.Zelinsky Institute of Organic ChemistryRussian Academy of SciencesMoscowRussia

Personalised recommendations