, Volume 74, Issue 5, pp 549–556 | Cite as

Characterization of Lipopolysaccharides from Pseudomonas fluorescens IMB 2108 (Biovar II) and IMB 2111 (Biovar IV) with O-Chains Represented by α-Glucan

  • S. N. Veremeichenko
  • G. M. Zdorovenko
  • E. L. Zdorovenko
  • G. M. Zatonskii
Experimental Articles


Results of studies of the structurally unique O-chains of lipopolysaccharides, which were isolated from the dry biomass of Pseudomonas fluorescens IMB 2108 (biovar II) and IMB 2111 (biovar IV) by the Westphal technique and purified by repeated ultracentrifugation, are reported. The bulk of the lipopolysaccharide preparations contained S- and R-molecules at an average molar ratio of 1 : 2. The main components of the hydrophobic moiety of lipid A were 3-hydroxydecanoic, 2-hydroxydodecanoic, 3-hydroxydodecanoic, dodecanoic, hexadecanoic, and octadecanoic acids, as well as hexadecenoic and octadecenoic acids. Glucosamine and phosphoethanolamine were identified as components of the hydrophilic moiety of lipid A. The degree of lipid A phosphorylation amounted to 3–4%. Fractions of the core oligosaccharide contained glucose, galactose, mannose, rhamnose, arabinose, glucosamine (only in strain IMB 2108), alanine, phosphoethanolamine, phosphorus, and 2-keto-3-deoxyoctulosonic acid (KDO). Heptose was present in trace amounts. O-specific polysaccharide chains were represented by a linear polymer of D-glucose units, which were linked together via α-(1,4) glycoside bonds. The existence of P. fluorescens strains that have α-1,4-glucan as the O-chain of their lipopolysaccharides has not been described before.

Key words

Pseudomonas fluorescens lipopolysaccharide lipid A core oligosaccharide O-specific polysaccharide α-1 4-D-glucan 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Krieg, N.R. and Holt, I.G., In Bergey's Manual of Systematic Bacteriology, L.: Williams and Wilkins, 1984, vol. 1, pp. 141–219.Google Scholar
  2. 2.
    Veremeichenko, S.N., Zdorovenko, G.M., and Sadovnikov, Yu.S., Numerical Analysis of the Bacteria of the Pseudomonas fluorescens Group Based on the Data on Lipopolysaccharide Structure, Mikrobiologiya, 1993, vol. 2, no.62, pp. 284–290.Google Scholar
  3. 3.
    Stanier, R.Y., Palleroni, N.J., and Doudoroff, M., The Aerobic Pseudomonads: A Taxonomic Study, J. Gen. Microbiol., 1966, vol. 43, no.2, pp. 159–271.PubMedGoogle Scholar
  4. 4.
    Kiprianova, E.A., Levanova, G.F., Novova, E.V., and Garagulya, A.D., DNA Homology and Some Problems of the Taxonomy of Saprophytic Fluorescent Bacteria of the Genus Pseudomonas, Mol. Genet. Mikrobiol. Virusol, 1984, no. 4, pp. 37–40.Google Scholar
  5. 5.
    Veremeichenko, S.N. and Zdorovenko, G.M., Peculiarities of the Structure of the Pseudomonas fluorescens IMV 247 (Biovar II) Lipopolysaccharide, Mikrobiologiya, 2000, vol. 69, no.3, pp. 362–369.Google Scholar
  6. 6.
    Zdorovenko, G.M. and Veremeichenko, S.N., Comparative Characterization of the Lipopolysaccharides of Different Pseudomonas fluorescens Biovar I Strains, Mikrobiologiya, 2001, vol. 70, no.4, pp. 509–518.Google Scholar
  7. 7.
    Zdorovenko, G.M., Lipopolysaccharides of Nonfermentative Gram-Negative Bacteria Pseudomonas and Alcaligenes, Doctoral (Biol.) Dissertation, Kiev, 1990.Google Scholar
  8. 8.
    Zdorovenko, G.M., Veremeichenko, S.N., and Zakharova, I.Ya., Comparative Characterization of Lipopolysaccharides of Pseudomonas fluorescens Strains, Mikrobiol. Zh., 1987, vol. 49, no.4, pp. 12–17.Google Scholar
  9. 9.
    Westphal, O. and Jann, K., Bacterial Lipopolysaccharides: Extraction with Phenol-Water and Further Application of the Procedure, Methods Carbohydr. Chem, 1985, vol. 5, pp. 83–91.Google Scholar
  10. 10.
    Droge, W., Lehmann, V., Luderitz, O., and Westphal, O., Structural Investigations on the 2-Keto-3-Deoxyoctonal Region of Lipopolysaccharides, Eur. J. Biochem., 1970, vol. 114, no.1, pp. 175–184.CrossRefGoogle Scholar
  11. 11.
    Knirel, Yu.A., Helbig, I.H., and Zahringer, U., Structure of a Disaccharide Isolated by Mild Acid Degradation and Dephosphorylation of the Lipopolysaccharide of Pseudomonas fluorescens Strain ATCC 49271, Carbohydr. Res., 1996, vol. 283, pp. 129–139.CrossRefPubMedGoogle Scholar
  12. 12.
    Kenne, L and Lindberg, B., in The Polysaccharides, Aspinali, G.O., Ed., New York: Academic, 1983, pp. 287–363.Google Scholar
  13. 13.
    Read, S.M., Currie, G., and Bacic, A., Analysis of the Structural Heterogeneity of Laminarin by Electrospray-Ionisation-Mass Spectrometry, Carbohydr. Res., 1996, vol. 281, pp. 187–201.CrossRefPubMedGoogle Scholar
  14. 14.
    Stahmann, K.-P., Monschau, N., Sahm, H., Koschel, A., Gawronski, M., Conrad, H., Springer, T., and Kopp, F., Structural Properties of Native and Sonicated Cinerean, a β-(1 → 3)(1 → 6)-D-Glucan Produced by Botrytis cinerea, Carbohydr. Res., 1995, vol. 266, pp. 115–128.CrossRefPubMedGoogle Scholar
  15. 15.
    Gutierrez, A., Prieto, A., and Martinez, A.T., Structural Characterization of Extracellular Polysaccharides Produced by Fungi from the Genus Pleurotus, Carbohydr. Res., 1996, vol. 281, pp. 143–154.CrossRefPubMedGoogle Scholar
  16. 16.
    James, P.G., Cherniak, R., Jones, R.G., Stortz, C.A., and Reiss, E., Cell Wall Glucans of Cryptococcus neoformans Cap 67, Carbohydr. Res., 1990, vol. 198, pp. 23–38.CrossRefPubMedGoogle Scholar
  17. 17.
    Schwebach, J.R., Glatman-Freedman, A., Gunther-Cummins, L., Dai, Z., Robbins, J.B., Schneerson, R., and Casadevall, A., Glucan Is a Component of the Myco-bacterium tuberculosis Surface That Is Expressed In Vitro and In Vivo, Infect. Immun., 2002, vol. 70, no.5, pp. 2566–2575.CrossRefPubMedGoogle Scholar
  18. 18.
    York, W.S., A Conformational Model for Cyclic-(12)-Linked Glucans Based on NMR Analysis of β-Glucans Produced by Xanthomonas campestris, Carbohydr. Res., 1995, vol. 278, pp. 205–225.CrossRefPubMedGoogle Scholar
  19. 19.
    Talaga, P., Fournet, B., and Bohin, J.-P., Periplasmic Glucans of Pseudomonas syringae pv. syringae, J. Bacteriol., 1994, vol. 176, pp. 6538–6544.PubMedGoogle Scholar
  20. 20.
    Cogez, V., Talaga, P., Lemoine, J., and Bohin, J.-P., Osmoregulated Periplasmic Glucans of Erwinia chrysanthemi, J. Bacteriol., 2001, vol. 183, no.10, pp. 3127–3133.CrossRefPubMedGoogle Scholar
  21. 21.
    Denny, T.P., Involvement of Bacterial Polysaccharides in Plant Pathogenesis, Annu. Rev. Phytopathol., 1995, vol. 33, pp. 173–197.Google Scholar
  22. 22.
    Gorshkova, R.P., Zubkov, V.A., Isakov, V.V., and Ovodov, Yu.S., Investigation of the Structure of D-Glucan in Yersinia pseudotuberculosis serovar VI, Khim. Prir. Soedin., 1981, vol. 3, no.56, pp. 151–154.Google Scholar

Copyright information

© MAIK "Nauka/Interperiodica" 2005

Authors and Affiliations

  • S. N. Veremeichenko
    • 1
  • G. M. Zdorovenko
    • 2
  • E. L. Zdorovenko
    • 3
  • G. M. Zatonskii
    • 3
  1. 1.Diaprof-Med Science and Production CompanyKievUkraine
  2. 2.Zabolotnyi Institute of Microbiology and VirologyNational Academy of Sciences of UkraineKievUkraine
  3. 3.Zelinsky Institute of Organic ChemistryRussian Academy of SciencesMoscowRussia

Personalised recommendations