Advertisement

Microbiology

, Volume 74, Issue 4, pp 428–433 | Cite as

Adaptive Reactions of Mycoplasmas In Vitro: “Viable but Unculturable Forms” and Nanocells of Acholeplasma laidlawii

  • V. M. Chernov
  • N. E. Mukhametshina
  • Yu. V. Gogolev
  • F. A. Abdrakhimov
  • O. A. Chernova
Experimental Articles

Abstract

The adaptation of Acholeplasma laidlawii to conditions unfavorable for growth has been found to be accompanied by cell transformation into special morphological structures known as ultramicroforms (nanocells). The ratio of the cells of the two morphological types in the population depended on the growth conditions. Nanocells retained viability for a long time under conditions unfavorable for growth and showed resistance to stressors. Reduction in the cell size occurred due to unequal division, which involved the loss of cytoplasmic material. A. laidlawii ultramicroforms (nanocells) were able to restore proliferative activity and to revert to their initial vegetative form; they measured less than 0.2 µm and are the smallest cells known at present. Nanocells formed in vitro under exposure to abiogenic stressors may correspond to the A. laidlawii minibodies observed in infected plants upon exposure to biogenic stressors. The transformation of A. laidlawii cells into ultramicroforms was accompanied by condensation of the nucleoid, a change in the polypeptide spectrum, and a change in the availability of rRNA operons for in vitro amplification. All these changes are indicative of reorganization of the genetic and metabolic systems of mycoplasmas.

Key words

mycoplasmas adaptation nanoforms viable but unculturable forms 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

REFERENCES

  1. 1.
    Borkhsenius, S.N., Cheronova, O.A., Chernov, V.M., and Vonskii, M.S., Mikoplasmy (Mycoplasmas), St. Petersburg: Nauka, 2002.Google Scholar
  2. 2.
    Litvin, V.Yu., Gintsburg, A.L., Pushkareva, V.I., Romanova, Yu.M., and Boev, B.V., Epidemiologicheskie aspekty ekologii bakterii (Epidemiological Aspects of Bacterial Ecology), Moscow, 1997.Google Scholar
  3. 3.
    Nagatomo, H., Takegahara, Y., Sonoda, T., Yamaguchi, A., Uemura, R., Hagiwara, S., and Sueyoshi, M., Comparative Studies of the Persistence of Animal Mycoplasmas under Different Environmental Conditions, Vet. Microbiol., 2001, vol. 82, no.3, pp. 223–232.CrossRefPubMedGoogle Scholar
  4. 4.
    Nakayama, J., Akkermans, A.D.L., and De Vos, W.M., High-Throughput PCR Screening of Genes for Three-Component Regulatory System Putatively Involved in Quorum Sensing from Low-G+C Gram-Positive Bacteria, Biosci. Biotechnol. Biochem., 2003, vol. 67, no.3, pp. 480–489.CrossRefPubMedGoogle Scholar
  5. 5.
    Golovlev, E.L., An Alternative State of Asporogenous Bacteria, Mikrobiologiya, 1998, vol. 67, pp. 725–735.Google Scholar
  6. 6.
    Vainshtein, M.B. and Kudryashova, E.B., Nannobacteria, Mikrobiologiya, 2000, vol. 69, pp. 163–174.Google Scholar
  7. 7.
    Davies, K.E., Genome Analysis, Oxford: IRL Press, 1988.Google Scholar
  8. 8.
    Weisburg, W.G., Tully, J.G., Rose, D.L., Petzel, J.P., Oyaizu, H., Yang, D., Mandelco, L., Sechrest, J., Lawrence, T.G., van Etten, J.L., Maniloff, J., and Woese, C.R., A Phylogenetic Analysis of the Mycoplasmas: Basis for Their Classification, J. Bacteriol., 1989, vol. 171, pp. 6455–6467.PubMedGoogle Scholar
  9. 9.
    Kong, F., James, G., Gordon, S., Zelynski, A., and Gilbert, G.L., Species-Specific PCR for Identification of Common Contaminant Mollicutes in Cell Culture, Appl. Environ. Microbiol., 2001, vol. 67, no.7, pp. 3195–3200.CrossRefPubMedGoogle Scholar
  10. 10.
    Gorg, A., Obermaier, C., Bogus, G., Harder, A., Scheibe, B., and Wildber, R., The Current State of Two-Dimensional Electrophoresis with Immobilized pH Gradients, Electrophoresis, 2000, vol. 21, pp. 1037–1053.CrossRefPubMedGoogle Scholar
  11. 11.
    Skripal’, I.G., Onishchenko, A.N., Alekseenko, I.P., and Malinovskaya, L.P., Ultrastructure of Plant Mycoplasmas and Their Interaction with Cells of Specific and Non-specific Hosts, Mikrobiol. Zh., 1978, vol. 40, pp. 58–63.PubMedGoogle Scholar
  12. 12.
    Shleeva, M.O., Bagramyan, K., Telkov, M.V., Mukamolova, G.V., Young, M., Kell, D.B., and Kaprelyants, A.S., Formation and Resuscitation of “Noncultivation” Cells of Rhodococcus rhodochrous and Mycobacterium tuberculosis in Prolonged Stationary Phase, Microbiology, 2002, vol. 148, pp. 1581–1591.PubMedGoogle Scholar
  13. 13.
    Chernov, V.M., Gogolev, Yu.V., Popova, N.V., and Chernova, O.A., Genetic Variability of Mycoplasmas (Acholeplasma laidlawii) during Their Interaction with Eukaryotes (Pisum sativum), Dokl. Akad. Nauk, 1999, vol. 369, pp. 275–277.Google Scholar
  14. 14.
    Serebrennikova, L.A., Soil as a Possible Habitat of Mycoplasmas, in Materialy yubil. nauchn. konf. (Proc. of a Jubilee Sci. Conf.), Moscow, 2003.Google Scholar
  15. 15.
    Kajander, E.O., Kuronen, I., Akerman, K., Pelttari, A., and Ciftcioglu, N., Nanobacteria from Blood, the Smallest Culturable Autonomously Replicated Agent on Earth, SPIE Proc., 1997, vol. 3111, pp. 420–428.CrossRefGoogle Scholar
  16. 16.
    Zigangirova, N.A., Barkhatova, O.I., Rakovskaya, I.V., and Gintsburg, A.L., Effect of Environmental Factors on the Expression of the Mycoplasma pneumoniae Gene That Determines Synthesis of the Adhesion Protein R1, Zh. Mikrobiol., Epidemiol., Immunobiol., 2003, no. 4, pp. 17–22.Google Scholar
  17. 17.
    Grey, B. and Steck, T., The Viable but Nonculturable State of Ralstonia solanacearum May Be Involved in Long-Term Survival and Plant Infection, Appl. Environ. Microbiol., 2001, vol. 67, no.9, pp. 3866–3872.CrossRefPubMedGoogle Scholar
  18. 18.
    Tarchevskii, I.A. and Chernov, V.M., Molecular Aspects of Phytoimmunity, Mikol. Fitopatol., 2000, vol. 34, pp. 1–10.Google Scholar

Copyright information

© MAIK “Nauka/Interperiodica” 2005

Authors and Affiliations

  • V. M. Chernov
    • 1
  • N. E. Mukhametshina
    • 1
  • Yu. V. Gogolev
    • 1
  • F. A. Abdrakhimov
    • 1
  • O. A. Chernova
    • 1
  1. 1.Kazan Institute of Biochemistry and Biophysics, Kazan Research CenterRussian Academy of SciencesKazanRussia

Personalised recommendations