Advertisement

Microbiology

, Volume 74, Issue 2, pp 141–146 | Cite as

The selection and properties of Penicillium verruculosum mutants with enhanced production of cellulases and xylanases

  • I. V. Solov’eva
  • O. N. Okunev
  • V. V. Vel’kov
  • A. V. Koshelev
  • T. V. Bubnova
  • E. G. Kondrat’eva
  • A. A. Skomarovskii
  • A. P. Sinitsyn
Experimental Articles

Abstract

The paper describes three Penicillium verruculosum 28K mutants with about threefold enhanced production of five industrially important carbohydrases. The two-stage fermentation process that we developed provided a further two- to threefold increase in the production of carbohydrases. Physiological and biochemical studies showed that the synthesis of all five carbohydrases is inducible. Carboxymethylcellulase, xylanase, and β-glucanase are synthesized under a common regulatory control, as is evident from the concurrent increase in the synthesis of these enzymes in the presence of microcrystalline cellulose. The synthesis of avicelase and β-glucosidase is evidently induced by other cellulose- and hemicellulose-containing compounds present in the fermentation medium and, hence, is regulated independently of the three aforementioned enzymes.

Key words

cellulase xylanase mutants fed-batch cultivation 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

REFERENCES

  1. 1.
    Bhat, M.K. and Bhat, S., Cellulose-Degrading Enzymes and Their Potential Industrial Applications, Biotechnol. Adv., 1997, vol. 15, pp. 583–620.CrossRefPubMedGoogle Scholar
  2. 2.
    Jain, S., Parriche, M., Durand, H., and Tiraby, G., Production of Polysaccharidases by a Cellulase-Pectinase Hyperproducing Mutant (Pol 6) of Penicillium occitanis, Enzyme Microb. Technol., 1990, vol. 12, pp. 691–695.CrossRefGoogle Scholar
  3. 3.
    Chaabouni, S.E., Belguith, H., Hassairi, I., Rad, M., and Ellouz, R., Optimization of Cellulase Production by Penicillium occitanis, Appl. Microb. Biotechnol., 1995, vol. 43, pp. 267–269.CrossRefGoogle Scholar
  4. 4.
    Brown, J.A., Collin, S.A., and Wood, T.M., Enhanced Enzyme Production by the Cellulolytic Fungus Penicillium pinophilum, Mutant Strain NTG III/6, Enzyme Microb. Technol., 1987, vol. 9, pp. 176–179.CrossRefGoogle Scholar
  5. 5.
    Lachke, A.H., Bastawde, K.B., Powar, V.K., and Srinivasant, M.C., Isolation of Hypercellulolytic Mutant (Cu-1) of Penicillium funiculosum, Enzyme Microb. Technol., 1988, vol. 8, pp. 105–108.CrossRefGoogle Scholar
  6. 6.
    Gomarteli, M., Kvesitadze, E., Bezborodov, A.M., Shkol’nyi, A.T., Dzhobava, M., and Adeishvili, E., Mutants of Penicillium canescens with Enhanced Xylanase Activity, Prikl. Biokhim. Mikrobiol., 1998, vol. 34, pp. 650–654.Google Scholar
  7. 7.
    Kastel’yanos, O.F., Ermolova, O.V., Sinitsyn, A.P., Popova, N.N., Okunev, O.N., Kerns, G., and Kude, E., Purification of Enzymes of the Cellulase Complex of Penicillium verruculosum and the Study of Their Biochemical Properties and Specificity, Biokhimiya, 1995, vol. 60, pp. 925–943.Google Scholar
  8. 8.
    Berlin, A.G., Gusakov, A.V., Sinitsyna, O.A., and Sinitsin, A.P., Detection of Major Xylanase-Containing Cellulose-Binding Domain from Penicillium verruculosum by Combination of Chromatofocusing and Limited Proteolysis, Appl. Biochem. Biotechnol., 2000, vol. 88, pp. 345–352.CrossRefGoogle Scholar
  9. 9.
    Teather, R.M. and Wood, P.J., Use of Congo-Red Polysaccharide Interaction in Enumeration and Characterization of Cellulolytic Bacteria from the Bovine Rumen, Appl. Environ. Microbiol., 1982, vol. 43, pp. 777–780.PubMedGoogle Scholar
  10. 10.
    Sinitsyn, A.P., Chernoglazov, V.M., and Gusakov, A.V., Metody opredeleniya aktivnosti tsellyulaz, Itogi Nauki Tekh., Ser. Biotekhnol., 1993, vol. 25, pp. 38–64.Google Scholar
  11. 11.
    Nelson, A., A Photometric Adaptation of the Determination of Reducing Sugars, J. Biol. Chem., 1944, vol. 153, pp. 375–380.Google Scholar
  12. 12.
    Somogy, M., A New Reagent for the Determination of Sugars, J. Biol. Chem., 1945, vol. 160, pp. 61–68.Google Scholar
  13. 13.
    Bailey, M.J. and Poutanen, K., Production of Xylanolytic Enzymes by Strains of Aspergillus, Appl. Microbiol. Biotechnol., 1989, vol. 30, pp. 5–10.CrossRefGoogle Scholar
  14. 14.
    Rao, M., Gaikwad, S., Mishra, C., and Deshpande, V., Induction and Catabolite Repression of Cellulase in Penicillium funiculosum, Appl. Biochem. Biotechnol., 1988, vol. 19, pp. 129–137.PubMedGoogle Scholar
  15. 15.
    Senior, D.J., Mayers, P.R., and Saddler, J.N., Xylanase Production by Trichoderma harzianum E58, Appl. Microbiol. Biotechnol., 1989, vol. 32, pp. 137–142.CrossRefGoogle Scholar
  16. 16.
    Hrmova, M., Biely, P., and Vrsanska, M., Cellulose-and Xylan-Degrading Enzymes of Aspergillus terreus and Aspergillus niger, Enzyme Microb. Technol., 1989, vol. 11, pp. 610–616.CrossRefGoogle Scholar
  17. 17.
    Nevalainen, H. and Pentilla, M., Molecular Biology of Cellulolytic Fungi, The Mycota: II. Genetic and Biotechnology, Esser, K. and Lemke, P.A., Eds., Berlin: Springer, 1995.Google Scholar
  18. 18.
    Kurasawa, T., Yachi, M., Suto, M., Kamagata, Y., Takao, S., and Tomita, F., Induction of Cellulase by Gentiobiose and Its Sulfur-Containing Analog in Penicillium purpurogenum, Appl. Environ. Microbiol., 1992, vol. 58, pp. 106–110.Google Scholar

Copyright information

© MAIK “Nauka/Interperiodica” 2005

Authors and Affiliations

  • I. V. Solov’eva
    • 1
  • O. N. Okunev
    • 1
  • V. V. Vel’kov
    • 1
  • A. V. Koshelev
    • 1
  • T. V. Bubnova
    • 1
  • E. G. Kondrat’eva
    • 2
  • A. A. Skomarovskii
    • 2
  • A. P. Sinitsyn
    • 2
  1. 1.Skryabin Institute of Biochemistry and Physiology of MicroorganismsRussian Academy of SciencesPushchino, Moscow oblastRussia
  2. 2.Moscow State UniversityVorob’evy gory, MoscowRussia

Personalised recommendations