, Volume 74, Issue 1, pp 97–103 | Cite as

Microbial processes at the Lost City vent field, Mid-Atlantic Ridge

  • L. E. Dulov
  • A. Yu. Lein
  • G. A. Dubinina
  • N. V. Pimenov
Experimental Articles


Microbiological and biogeochemical measurements showed that the intensities of CO2 assimilation, methane oxidation, and sulfate reduction at the Lost City vent field (3° N) reach 3.8 µg C/(1 day), 0.06 µg C/(1 day), and 117 µg S/(1 day), respectively. On the surface of the carbonate structures occurring at this field, two varieties of bacterial mats were found. The first variety, which is specific to the Lost City alkaline vent field, represents jellylike bacterial mats dominated by slime-producing bacteria of several morphotypes. This mat variety also contains chemolithotrophic and heterotrophic microorganisms, either microaerobic or anaerobic. The intensities of CO2 assimilation, methane oxidation, and sulfate reduction in this variety reach 747 µg C/(dm3 day), 0.02 µg C/(dm3 day), and 28000 µg S/(dm3 day), respectively. Bacterial mats of the second variety are formed by nonpigmented filamentous sulfur bacteria, which are close morphologically to Thiothrix. The intensities of CO2 assimilation, methane oxidation, and sulfate reduction in the second mat variety reach 8.2 µg C/(dm3 day), 5.8 µg C/(dm3 day), and 17000 µg S/(dm3 day), respectively. These data suggest the existence of subsurface microflora at the Lost City vent field.

Key words

bacterial mats CO2 assimilation methane oxidation sulfate reduction chemosynthesis alkaline vents Mid-Atlantic Ridge vent fields 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Karl, D.M., Wirsen, C.O., and Jannasch, H.W., Deep-Sea Primary Production at the Galapagos Hydrothermal Vents, Science, 1980, vol. 207, pp. 1345–1347.Google Scholar
  2. 2.
    Lein, A.Yu., Gal’chenko, V.F., Pimenov, N.V., and Ivanov, M.V., The Role of Bacterial Chemosynthesis and Methanotrophy in Oceanic Biogeochemistry, Geokhimiya, 1993, vol. 2, pp. 252–268.Google Scholar
  3. 3.
    Gal’chenko, V.F., Lein, A.Yu., Galimov, E.M., and Ivanov, M.V., Methanotrophic Symbiotic Bacteria as the Primary Level of the Oceanic Trophic Chain, Dokl. Akad. Nauk SSSR, 1988, vol. 300, pp. 717–720.Google Scholar
  4. 4.
    Lein, A.Yu., Gal’chenko, V.F., Pimenov, N.V., and Pavlova, G.A., Biogeochemical Processes in the Region of an Active Hydrothermal Field in the TAG Ridge Zone, Gidrotermal’nye sistemy i osadochnye formatsii sredinno okeanicheskikh khrebtov Atlantiki (Hydrothermal Systems and Sedimentary Formations in the Mid-Atlantic Ridge Region), Lisitsyn, A.P., Ed., Moscow: Nauka, 1993, pp. 113–146.Google Scholar
  5. 5.
    Lein, A.Yu., Pimenov, N.V., Vinogradov, M.E., and Ivanov, M.V., The Rates of CO2 Assimilation and Bacterial Production of Organic Matter in the Hydrothermal Fields (2° N and 29° N) of the Mid-Atlantic Ridge, Okeanologiya (Moscow), 1997, vol. 37, no. 3, pp. 396–407.Google Scholar
  6. 6.
    Pimenov, N.V., Lein, A.Yu., Sagalevich, A.M., and Ivanov, M.V., Carbon Dioxide Assimilation and Methane Oxidation in Various Zones of the Rainbow Hydrothermal Field, Mikrobiologiya, 2000, vol. 69, no. 6, pp. 810–818.Google Scholar
  7. 7.
    Lein, A.Yu. and Pimenov, N.V., The Role of Bacterial Production on Active Hydrothermal Fields in the Total Balance of Organic Carbon in the Ocean, Biologiya gidrotermal’nykh sistem (The Biology of Hydrothermal Systems), Gebruk, A.V., Ed., Moscow: KMK Press, 2002, pp. 320–328.Google Scholar
  8. 8.
    Blackman, D., Karson, J., and Kelley, D., Shipboard Scientific Party: Seafloor Mapping and Sampling of the MAR 30° N Oceanic Core Complex-MARVEL (Mid-Atlantic Ridge Vents in Extending Lithosphere), 2000, International Ridge-Crest Research: Mid-Atlantic Ridge, InterRidge News, 2001, vol. 10, no. 1, pp. 33–36.Google Scholar
  9. 9.
    Lein, A.Yu., Bogdanov, Yu.A., Sagalevich, A.M., Peresypkin, V.I., and Dulov, L.E., The White Pillars of Lost City, Priroda, 2002, no. 12, pp. 40–46.Google Scholar
  10. 10.
    Bol’shakov, A.M. and Egorov, A.V., On the Use of the Phase-Equilibrium Degassing in Gasometric Studies, Okeanologiya (Moscow), 1987, vol. 27, no. 5, pp. 861–862.Google Scholar
  11. 11.
    Gal’chenko, V.F., Ivanov, M.V., and Lein, A.Yu., Microbiological and Biogeochemical Processes in the Main Water Oceanic Mass as Indicators of the Activity of Submarine Hydrothermal Vents, Geokhimiya, 1989, vol. 8, pp. 1075–1088.Google Scholar
  12. 12.
    Kuznetsov, S.I. and Dubinina, G.A., Metody izucheniya vodnykh mikroorganizmov (Methods for Studying Aquatic Microorganisms), Moscow: Nauka, 1989, pp. 254–255.Google Scholar
  13. 13.
    Marteinsson, V.T., Kristjansson, J.K., Kristmannsdottir, H., Dahlkvist, M., Saemundsson, K., Hannington, M., Petursdottir, S.K., Geptner, A., and Stoffers, P., Discovery and Description of Giant Submarine Smectite Cones on the Seafloor in Eyjafjordur, Northern Iceland, and a Novel Thermal Microbial Habitat, Appl. Environ. Microbiol., 2001, vol. 67, pp. 827–833.Google Scholar
  14. 14.
    Baskov, E.A. and Surikov, S.N., Gidrotermy Zemli (The Hydrothermal Vents of the Earth), Leningrad: Nedra, 1989.Google Scholar
  15. 15.
    Dubinina, G.A., Leshcheva, N.V., and Grabovich, M.Yu., The Isolation and the Taxonomic Study of Colorless Sulfur Bacteria from the Genus Thiodendron, Mikrobiologiya, 1993, vol. 61, no. 6, pp. 717–732.Google Scholar
  16. 16.
    Fukui, M.A., Teske, A., Assmus, H., Muyzep, C., and Widdel, F., Physiology, Phylogenetic Relationship, and Ecology of Filamentous Sulfate-Reducing Bacteria (the genus Desulfonema), Arch. Microbiol., 1999, vol. 172, pp. 192–203.Google Scholar
  17. 17.
    Pikuta, E., Lysenko, A., Suzina, N., Osipov, G., Kuznetsov, B., Tourova, N., Akimenko, V., and Laurinavichius, K., Desulfotomaculum alkaliphilum sp. now., a New Alkaliphilic, Moderately Thermophilic, Sulfate-Reducing Bacterium, Int. J. Syst. Evol. Microbiol., 2000, vol. 50, pp. 25–33.Google Scholar

Copyright information

© MAIK “Nauka/Interperiodica” 2005

Authors and Affiliations

  • L. E. Dulov
    • 1
  • A. Yu. Lein
    • 2
  • G. A. Dubinina
    • 1
  • N. V. Pimenov
    • 1
  1. 1.Winogradsky Institute of MicrobiologyRussian Academy of SciencesMoscowRussia
  2. 2.Shirshov Institute of OceanologyRussian Academy of SciencesMoscowRussia

Personalised recommendations