Simulation of Sensitive Element Found on Planar Mushroom-Shaped Metamaterial for Nondestructive Testing and Searching for Inhomogeneities in Technological Media

A computer model of a sensitive element on a planar mushroom-shaped metamaterial with Maltese cross-type cells is created. Results of a numerical experiment are presented. It is own that this type of electrodynamic structure may be used in nondestructive testing of the geometric and electro-physical parameters of technological media as well as in searching in these media for inhomogeneities relative to variations of the attenuation coefficient and relative to the resonant frequency of the sensitive element.

This is a preview of subscription content, access via your institution.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.

References

  1. 1.

    V. G. Veselago, “Electrodynamics of substances with simultaneously negative values of ε and μ,” Usp. Fiz. Nauk, 92, No. 7, 517–526 (1967), https://doi.org/10.3367/UFNr.0092.196/07d.0517.

    Article  Google Scholar 

  2. 2.

    D. R. Smith, W. J. Padilla, D. C. Vier, et al., Phys. Rev. Lett., 84, 4184–4187 (2000), https://doi.org/10.1103/PhysRevLett.84.4184.

    Article  ADS  Google Scholar 

  3. 3.

    J. B. Pendry, A. J. Holden, W. J. Stewart, and I. Youngs, Phys. Rev. Lett., 76, 4773–4776 (1996), https://doi.org/10.1103/PhysRevLett.76.4773.

    Article  ADS  Google Scholar 

  4. 4.

    D. F. Sievenpiper, High-Impedance Electromagnetic Surfaces: PhD Dissertation, Univ. of California, Los Angeles (1999).

    Google Scholar 

  5. 5.

    Yu. A. Ilarionov, Calculation of Parameters of Crimped and Partially Filled Waveguides, Sov. Radio, Moscow (1980).

    Google Scholar 

  6. 6.

    A. A. Yelizarov and Yu. N. Pchel’nikov, Radiowave Elements of Technological Instruments and Devices with the Use of Electrodynamic Delay-Time Systems, Radio i Svyaz, Moscow (2002).

    Google Scholar 

  7. 7.

    A. A. Yelizarov and A. S. Kukharenko, Microwave Frequency-Selective Devices Based on Resonance Segments of Electrodynamic Delay-Time Systems and Structures with Metamaterials, Izd. Dom VShE, Moscow (2019), https://doi.org/10.17323/978-5-7598-1796-3.

    Google Scholar 

  8. 8.

    A. A. Yelizarov and E. A. Zakirova, Microband UHF Devices Based on Printed Boards with Multilayer Dielectric Substrates, Media-Publisher, Moscow (2016).

    Google Scholar 

  9. 9.

    A. S. Kukharenko and A. A. Yelizarov, Practical Application of Metamaterials in Structures of UHF Devices, LAP Lambert Academic Publishing, Saarbrucken (2016).

    Google Scholar 

  10. 10.

    A. S. Kukharenko and A. A. Yelizarov, “Analysis of the physical features of metamaterials and of frequency-selective UHF devices based on metamaterials,” T-Comm: Telekom. Transp., 9, No. 5, 36–41 (2015).

    Google Scholar 

  11. 11.

    A. A. Yelizarov, I. V. Nazarov, and A. A. Skuridin, “Computer simulations of multiband waveguide fi lter on modulated metasurface,” in: Proc. 14th Europ. Conf. Antennas and Propagation (EuCAP 2020), Copenhagen, Denmark (2020), pp. 1–4.

    Google Scholar 

  12. 12.

    A. S. Kukharenko and A. A. Yelizarov, “Methods of expanding the bands of suppression band of ultra-high-frequency devices based on planar modified mushroom-shaped structures of metamaterials,” Radiotekhn. Elektron., 61, No. 2, 192–198 (2016), https://doi.org/10.7868/S0033849416010071.

    Article  Google Scholar 

  13. 13.

    A. S. Kukharenko and A. A. Yelizarov, “Study of frequency-selective surface on a base of planar mushroom-shaped metamaterial with electronic adjustment of occlusion strip,” Radiotekhn. Elektron., 61, No. 9, 865–870 (2016), https://doi.org/10.1134/S1064226916090060.

    Article  Google Scholar 

  14. 14.

    A. A. Yelizarov and A. S. Kukharenko, “Metamaterial-based frequenc-selective surface with a band gap electronic adjustment,” in: Proc. 2016 German Microwave Conf., IMATech e.V. Ratingen, Bochum (2016), pp. 271–273.

    Google Scholar 

  15. 15.

    B. Munk, Frequency-Selective Surfaces: Theory and Design, J. Wiley & Sons, New York (2000).

    Google Scholar 

  16. 16.

    A. A. Yelizarov, A. S. Kukharenko, and A. A. Skuridin, “Metamaterial-based sensor for measurements of physical quantities and parameters of technological processes,” in: Proc. 12th Int. Conf. on Artifi cial Materials for Novel Wave Phenomena (METAMATERIALS 2018), Espoo, Finland (2018), pp. 448–450.

    Google Scholar 

  17. 17.

    A. A. Yelizarov, I. V. Nazarov, A. S. Kukharenko, and A. A. Skuridin, “Investigation of microwave sensor on the planar mushroom-shaped metamaterial,” in: Proc. 18th Int. Vacuum Electronic Conf. (IVEC-2017), London (2017), p. 1–2.

  18. 18.

    A. S. Kukharenko, A. A. Yelizarov, A. A. Skuridin, and M. I. Zakirova, Patent No. 170 145 RF, Izobret. Polezn. Modeli, No. 11 (2017).

  19. 19.

    A. A. Yelizarov and A. S. Kukharenko, Patent No. 2 585 178 RF, Izobret. Polezn. Modeli, No. 15, 1–9 (2016).

  20. 20.

    A. A. Yelizarov, O. E. Malinova, T. V. Sidorova, A. A. Skuridin, Certif. State Registr. Comp. Progr. No. 2019613769, Izobret. Polezn. Modeli, No. 4, 1–2 (2019).

  21. 21.

    A. A. Yelizarov, I. V. Nazarov, A. A. Skuridin, and E. A. Zakirova, “Computer model of frequency-selective surface on mushroom-shaped metamaterial,” in: Proc. Systems of Signal Synchronization, Generating, and Processing in Telecommunications (SYNCHROINFO 2020), IEEE Conf. Rec. #49631, Svetlogorsk, Russia (2020), pp. 1–4.

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to A. A. Yelizarov.

Additional information

Translated from Izmeritel’naya Tekhnika, No. 10, pp. 54–59, October, 2020.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Yelizarov, A.A., Skuridin, A.A. & Zakirova, E.A. Simulation of Sensitive Element Found on Planar Mushroom-Shaped Metamaterial for Nondestructive Testing and Searching for Inhomogeneities in Technological Media. Meas Tech 63, 828–833 (2021). https://doi.org/10.1007/s11018-021-01860-1

Download citation

Keywords

  • sensitive element
  • mushroom-shaped metamaterial
  • resonance frequency
  • attenuation coefficient
  • technological medium
  • nondestructive testing
  • search for inhomogenities