Comparison of Sensitivity of the Refractometric Methods of Frustrated Total Internal Reflection and Surface Plasmon Resonance

In recent years, an optical method for studying a thin boundary layer of media based on the phenomenon of surface plasmon resonance has been widely used. One of the advantages of this method is the experimentally established high sensitivity. According to theoretical calculations, another similar optical method of investigation based on the phenomenon of frustrated total internal reflection is more sensitive. The comparison of sensitivities to the change of the refractive index of the thin boundary layer of the investigated medium is performed for the two indicated optical refractometric methods: surface plasmon resonance and frustrated total internal reflection. It is shown that under the same experimental conditions, both methods have similar sensitivities to changes of the refractive index of the thin boundary layer of the investigated medium, and therefore each of them is noteworthy when choosing a method of investigation in each specific case.

This is a preview of subscription content, log in to check access.

Fig. 1.
Fig. 2.
Fig. 3.

References

  1. 1.

    M. A. Hashemi and C. M. Heron, Meccanica, 54, No. 4–5, 653–665 (2019), DOI: https://doi.org/10.1007/s11012-019-00966-9.

    Article  Google Scholar 

  2. 2.

    D. Berh, A. Scherzinger, N. Otto, et al., Comput. Biol. Med., No. 93, 189–199 (2018), DOI: https://doi.org/10.1016/j.compbiomed.2017.12.017.

    Article  Google Scholar 

  3. 3.

    N. D. Smith and J. S. Sharp, Sci. Justice, 57, No. 3, 193–198 (2017), DOI: https://doi.org/10.1016/j.scijus.2017.03.003.

    Article  Google Scholar 

  4. 4.

    N. M. Grebenikova, K. J. Smirnov, V. V. Artemiev, et al., J. Phys. Conf. Ser., 1038, 012089 (2018), DOI: https://doi.org/10.1088/1742-6596/1038/1/012089.

    Article  Google Scholar 

  5. 5.

    P. Zhu, J. Opt. (UK), 18, No. 2, 025403 (2016), DOI: https://doi.org/10.1088/2040-8978/18/2/025403.

    ADS  Article  Google Scholar 

  6. 6.

    V. S. Terentyev and V. A. Simonov, “An experimental method for manufacturing a conforming metal-dielectric structure for a sensor based on the effect of frustrated total internal reflection,” Avtometriya, 51, No. 6, 89–98 (2015).

    Google Scholar 

  7. 7.

    I. N. Pavlov and B. S. Rinkevichyus, Opt. Mem. Neural Networks, 18, No. 4, 322–327 (2009), DOI: https://doi.org/10.3103/S1060992X09040110.

    Article  Google Scholar 

  8. 8.

    I. N. Pavlov, B. S. Rinkevichyus, and A. V. Tolkachev, “Laser visualizer of inhomogeneities in near-wall layers of a liquid,” Izmer. Tekhn., No. 10, 33–35 (2010).

    Google Scholar 

  9. 9.

    I. N. Pavlov, B. S. Rinkevichyus, and A. V. Tolkachev, “Visualization of crystallization processes in the near-wall layer of a water drop,” Metrologiya, No. 3, 11–17 (2013).

    Google Scholar 

  10. 10.

    I. N. Pavlov, B. S. Rinkevichyus, and A. V. Tolkachev, Instrum. Exp. Tech., 56, No. 2, 242–246 (2013), DOI: https://doi.org/10.1134/S0020441213020103.

    Article  Google Scholar 

  11. 11.

    Yu. A. Khodyko, V. I. Saverchenko, and S. P. Fisenko, Interfac. Phenom. Heat Transf., 6, No. 3, 231–238 (2018), DOI: https://doi.org/10.1615/InterfacPhenomHeatTransfer.2019029624.

    Article  Google Scholar 

  12. 12.

    I. N. Pavlov, B. S. Rinkevichyus, and A. V. Vedyashkina, J. Phys. Conf. Ser., 737, No. 1, 012044 (2016), DOI: https://doi.org/10.1088/1742-6596/737/1/012044.

    Article  Google Scholar 

  13. 13.

    M. Born and E. Wolf, Principles of Optics [Russian translation], Nauka, Moscow (1973).

    Google Scholar 

  14. 14.

    L. Novotny and B. Hecht, Principles of Nanooptics [Russian translation], Fizmatlit, Moscow (2009).

    Google Scholar 

  15. 15.

    I. N. Pavlov, B. S. Rinkevichyus, and A. V. Tolkachev, Sci. Visualiz., 6, No. 3, 1–13 (2014).

    Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to I. N. Pavlov.

Additional information

Translated from Izmeritel’naya Tekhnika, No. 2, pp. 45–49, February, 2020.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Pavlov, I.N. Comparison of Sensitivity of the Refractometric Methods of Frustrated Total Internal Reflection and Surface Plasmon Resonance. Meas Tech 63, 125–129 (2020). https://doi.org/10.1007/s11018-020-01760-w

Download citation

Keywords

  • surface plasmon resonance
  • frustrated total internal refl ection
  • optical methods of investigation
  • boundary layer
  • sensitivity to refractive index