Measurement Techniques

, Volume 60, Issue 10, pp 1016–1021 | Cite as

Experimental Study of Metrological Characteristics of the Automated Interferometric System for Measuring the Surface Shape of Diffusely Reflecting Objects

  • E. E. Maiorov
  • V. T. Prokopenko
  • A. Ch. Mashek
  • G. A. Tsygankova
  • A. V. Kurlov
  • M. V. Khokhlova
  • D. I. Kirik
  • D. D. Kapralov

The metrological characteristics of an automated interferometric system for measuring the surface shape of diffusely reflecting objects have been experimentally studied. Changes in the amplitude of the output signal during modulation of the optical path difference were studied and visualization of the effect of introduced interference on the measurement error was made. It is established that as the angle of incidence of optical radiation increases, the duration of the interference signal increases and, correspondingly, the measurement error of the automated interferometric system. The dependence of the measurement range on the scanning frequency of the reference mirror is obtained. The measurement error of an automated interferometric system under normal illumination does not exceed 0.67 μm.


interferometer partially coherent source coherence length diffusely reflecting object decorrelated speckle field contrast of interference field diffraction grating 


  1. 1.
    De Lega, Patent 6195168 USA, “Infrared scanning interferometry apparatus and method” (2001).Google Scholar
  2. 2.
    G. Hausler and M. W. Lindner, “Coherence radar and spectral radar – new tools for dermatological diagnosis,” F. Biomed. Opt., 3, No. 1, 21–31 (1998).CrossRefGoogle Scholar
  3. 3.
    F. Gu, Y. Hung, and F. Chen, “Iteration algorithm for computer-aided speckle interferometry,” Appl. Opt., 33, No. 23, 5308–5317 (1994).ADSCrossRefGoogle Scholar
  4. 4.
    I. P. Gurov and L. Gang, “Automatic inspection of non-smooth surface displacements by interferometer with low-coherent illumination,” Proc. SPIE, 2899, 230–239 (1996).ADSCrossRefGoogle Scholar
  5. 5.
    M. Born and E. Wolf, Fundamentals of Optics, Nauka, Moscow (1970).Google Scholar
  6. 6.
    V. A. Afanas’ev, Optical Measurements, Nedra, Moscow (1968).Google Scholar
  7. 7.
    D. Malakara, Optical Manufacturing Control [Russian translation], Mashinostroenie, Moscow (1985).Google Scholar
  8. 8.
    M. Francon, Optics of Speckle [Russian translation], Mir, Moscow (1980).Google Scholar
  9. 9.
    E. E. Majorov and V. T. Prokopenko, “A limited-coherence interferometer system for examination of biological objects,” Biomed. Eng., 46, No. 3, 109–111 (2012).CrossRefGoogle Scholar
  10. 10.
    E. E. Majorov and V. T. Prokopenko, “Investigation of the influence of the speckle structure on the formation of an interference signal and measurement error,” Nauchn. Priborostr., 23, No. 2, 38–46 (2013).Google Scholar
  11. 11.
    E. E. Majorov, “The method of eliminating the effect of decorrelation of speckle fields on the accuracy of measurements and the dynamic range of interference signals,” Nauchn. Obozr., No. 9, 329–332 (2013).Google Scholar
  12. 12.
    E. E. Majorov, A. Ch. Mashek, S. V. Udakhina, et al., “Algorithms for information signal processing of the automatic interferometric control system for nonsmooth surfaces,” Nauchn. Priborostr., 25, No. 4, 61–66 (2015).CrossRefGoogle Scholar
  13. 13.
    E. E. Majorov, V. T. Prokopenko, A. Ch. Mashek, et al., “Optoelectronic device for controlling geometric parameters of diffusely reflecting objects,” Izv. Vuzov. Priborostr., 59, No. 5, 388–394 (2016).Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • E. E. Maiorov
    • 1
  • V. T. Prokopenko
    • 2
  • A. Ch. Mashek
    • 3
  • G. A. Tsygankova
    • 3
  • A. V. Kurlov
    • 4
  • M. V. Khokhlova
    • 5
  • D. I. Kirik
    • 6
  • D. D. Kapralov
    • 6
  1. 1.St. Petersburg University of Management and Economics TechnologiesSt. PetersburgRussia
  2. 2.St. Petersburg National Research University of Information TechnologiesMechanics, and Optics (ITMO)St. PetersburgRussia
  3. 3.Naval Polytechnic InstitutePushkinRussia
  4. 4.St. Petersburg State University of Aerospace InstrumentationSt. PetersburgRussia
  5. 5.Mozhaisky Military Space AcademySt. PetersburgRussia
  6. 6.Bonch-Bruevich St. Petersburg State University of TelecommunicationsSt. PetersburgRussia

Personalised recommendations