Advertisement

Measurement Techniques

, Volume 59, Issue 7, pp 722–727 | Cite as

The 229Th Isomer Line as a Reference for a High-Precision Frequency Standard

  • F. F. Karpeshin
  • M. B. Trzhaskovskaya
TIME AND FREQUENCY MEASUREMENTS
  • 61 Downloads

The use of the nuclide 229Th as a new nuclear-optical frequency standard is studied theoretically. The mechanism for two-photon optical pumping of the 7.6 eV isomer through the optical shell in singly charged ions is examined. The decisive role of the 8s–7s resonance transition is demonstrated. It is shown that the required energy of the two photons is equal to the sum of the energies of the nuclear level and the 7s-state of the atom. The lifetime of the isomer in the singly charged ion is 165 sec.

Keywords

optical frequency standard nuclear frequency standard 229mTh isomer nuclear clock nuclear excitation by electronic transition 

References

  1. 1.
    B. R. Beck, J. A. Becker, P. Beiersdorfer, et al., “Energy splitting of the ground-state doublet in the nucleus 229Th,” Phys. Rev. Lett., 98, 142501-1–142501-4 (2007).ADSGoogle Scholar
  2. 2.
    F. F. Karpeshin and M. B. Trzhaskovskaya, “Resonance conversion as the main channel for decay of the 3.5 eV isomer in 229mTh,” Yad. Fizika, 69, 596–604 (2006).Google Scholar
  3. 3.
    F. F. Karpeshin and M. B. Trzhaskovskaya, “Impact of the electron environment on the lifetime of the 229Thm low-lying isomer,” Phys. Rev. C, 76, 054313-1–54313-10 (2007).ADSCrossRefGoogle Scholar
  4. 4.
    C. J. Campbell, A. G. Radnaev, A. Kuzmich, et al., “Single-ion nuclear clock for metrology at the 19th decimal place,” Phys. Rev. Lett., 108, 120802-1–120802-5 (2012).ADSGoogle Scholar
  5. 5.
    N. Huntemann, C. Sanner, B. Lipphardt, et al., “Single-ion atomic clock with 3·10–18 systematic uncertainty,” Phys. Rev. Lett., 116, 063001-1–063001-5 (2016).ADSCrossRefGoogle Scholar
  6. 6.
    L. Wense, B. Seiferle, M. Laatiaoui, et al., “Direct detection of the thorium-229 isomer: Milestone towards a nuclear clock,” Nature, 533, 47–63 (2016).ADSCrossRefGoogle Scholar
  7. 7.
    F. F. Karpeshin, I. M. Band, M. B. Trzhaskovskaya, and M. A. Listengarten, “Optical pumping 229mTh through NEET as a new effective way of producing nuclear isomers,” Phys. Lett. B, 372, 1–7 (1996).ADSCrossRefGoogle Scholar
  8. 8.
    F. F. Karpeshin, Nuclear Fission in Muonic Atoms and Resonance Conversion, Nauka, St. Petersburg (2006).Google Scholar
  9. 9.
    9. T. T. Inamura and H. Haba, “Search for a ‘3.5-eV isomer’ in 229Th in a hollow-cathode electric discharge,” Phys. Rev. C, 79, 034313-1–034313-10 (2009).ADSCrossRefGoogle Scholar
  10. 10.
    O. A. Herrera-Sancho, N. Nemitz, M. V. Okhapkin, and E. Peik, “Energy levels of Th+ between 7.3 and 8.3 eV,” Phys. Rev. A, 88, 012512-1–012512-7 (2013).ADSCrossRefGoogle Scholar
  11. 11.
    L. F. Vitushkin and A. I. Mikhailov, “Two-photon ionization of atoms by photons from different beams,” Opt. Spektrosk., 50, 11–18 (1981).ADSGoogle Scholar
  12. 12.
    B. A. Zon and F. F. Karpeshin, “Accelerated decay of the 235mU nucleus by resonance internal conversion stimulated by laser radiation,” Zh. Eksp. Teor. Fiz., 97, 401–408 (1990).ADSGoogle Scholar
  13. 13.
    NIST Atomic Spectra Database, www.nist.gov/pml/data/asd.cfm, acces. Jan. 1, 2016.
  14. 14.
    I. M. Band, M. B. Trzhaskovskaya, C. W. Nestor Jr., et al., “Dirac–Fock internal conversion coefficients,” At. Data Nucl. Data Tables, 81, 1–334 (2002).ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  1. 1.Mendeleev All-Russia Research Institute of Metrology (VNIIM)St. PetersburgRussia
  2. 2.Konstantinov St. Petersburg Nuclear Physics Institute (PNPI)St. PetersburgRussia

Personalised recommendations