Advertisement

Measurement Techniques

, Volume 59, Issue 6, pp 571–576 | Cite as

Nonparametric Estimate of a Parzen-Type Probability Density with an Implicitly Specified Form of the Kernel

  • A. V. Lapko
  • V. A. Lapko
GENERAL PROBLEMS OF METROLOGY AND MEASUREMENT TECHNIQUE
  • 55 Downloads

A nonparametric estimate for the probability density is proposed with better approximation properties than the traditional Rosenblatt–Parzen statistics. The dependences of its properties on the form of the kernel function and on the formulas for the sampling interval for the random quantity are discussed.

Keywords

probability density nonparametric Rosenblatt–Parzen estimate approximation properties kernel function Sturges’ rule Heinhold–Gaede formula 

Notes

This work was carried out within the framework of the project part of State Assignment of Ministry of Education and Science of Russia (No. 2.914.2014/K).

References

  1. 1.
    E. Parzen, “On estimation of a probability density function and mode,” Ann. Math. Stat., 33, No. 3, 1065–1076 (1962).MathSciNetCrossRefMATHGoogle Scholar
  2. 2.
    L. Devroye and L. Durphee, Nonparametric Estimation of Density (L 1 approach) [Russian translation], Mir, Moscow (1988).Google Scholar
  3. 3.
    V. A. Epanechnikov, “Nonparametric estimation of a multivariate probability density,” Teor. Veroyatn. Primen., 14, No. 1, 156–161 (1969).MATHGoogle Scholar
  4. 4.
    A. V. Lapko and V. A. Lapko, “Analysis of the properties of a mixture of nonparametric estimates of the probability densities of a multivariate random variable,” Vest. SibGAU, No. 2, 32–35 (2010).Google Scholar
  5. 5.
    A. V. Lapko and V. A. Lapko, “Regression estimate of the multidimensional probability density and its properties,” Opto-Electron., Instrum. Data Proc., 50, No. 2, 148–153 (2014).CrossRefGoogle Scholar
  6. 6.
    R. P. W. Duin, “On the choice of smoothing parameters for Parzen estimators of probability density functions,” IEE Trans. Comp., C-25, 1175–1179 (1976).MathSciNetCrossRefMATHGoogle Scholar
  7. 7.
    H. A. Sturges, “The choice of class interval,” J. Am. Stat. Assoc., 65–66 (1926).Google Scholar
  8. 8.
    I. Heinhold and K. Gaede, Ingenieur Statistik, Springer, Munich, Vienna (1964).MATHGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  1. 1.Institute of Computational ModellingSiberian Branch of the Russian Academy of SciencesKrasnoyarskRussia
  2. 2.Siberian State Aerospace UniversityKrasnoyarskRussia

Personalised recommendations