Measurement Techniques

, Volume 58, Issue 9, pp 1029–1036 | Cite as

A Method of Filtering Signals Using Local Models and Weighted Averaging Functions


A method of filtering using sequences of sliding local approximation models and weighted averaging functions is considered. The method is used to filter signals of the coordinates of the geomagnetic field strength vectors. The filtering error is estimated using statistical modeling.


filtering approximation local models weighted averaging functions statistical modeling geomagnetic field 


  1. 1.
    A. A. Voronin, “Identification of PC-5 geomagnetic pulsations at a stationary point of the Elektro geostationary meteorological satellite,” Geliogeofiz. Issled., No. 3, 12–18 (2013).Google Scholar
  2. 2.
    N. G. Kleimenova, N. R. Zelinski, O. V. Kozyreva, et al., “Pc3 geomagnetic pulsations at equatorial latitudes in the initial phase of the magnetic storm of April 5, 2010.” Geomag. Aeronom., 53, No. 3, 330–336 (2013).CrossRefGoogle Scholar
  3. 3.
    D. Vassiliadis and A. D. Klimas, “On the uniqueness of linear moving-average fi lters for the solar wind-auroral geomagnetic activity coupling,” J. Geophys. Res., 100, No. A4, 5637–5641 (1995).CrossRefADSGoogle Scholar
  4. 4.
    O. R. Kuzichkin, “The use of regression analysis when processing signals in a system for monitoring pulsed geomagnetic sources,” Methods and Instruments for Transmitting and Processing Data, Radiotekhnika, Moscow (2007), Iss. 9, pp. 39–43.Google Scholar
  5. 5.
    O. V. Mandrikova and I. S. Solov’ev, “Wavelet-technology for processing and analysing variations of the Earth’s magnetic field,” Inform. Tekhnol., No. 1, 34–38 (2011).Google Scholar
  6. 6.
    P. Kovacs, V. Carbone, and Z. Voros, “Wavelet-based fi ltering of intermittent events from geomagnetic time-series,” Planet. Space Sci., 49, No. 12, 1219–1231 (2001).CrossRefADSGoogle Scholar
  7. 7.
    K. Nowozynski, T. Ernst, and J. Jankowski, “Adaptive smoothing method for derivation of K-indices,” Geophys. J. Int., 104, 85–93 (1991).CrossRefADSGoogle Scholar
  8. 8.
    A. D. Gvishiani, S. M. Agayan, Sh. R. Bogoutdinov, and A. I. Kagan, “Gravitational smoothing of time series,” Trudy Inst. Mat. Mekh UrO RAN, 17, No. 2, 62–70 (2011).Google Scholar
  9. 9.
    V. I. Marchuk, K. E. Rumyantsev, and A. I. Sherstobitov, “Filtering of low-frequency processes with a limited volume of measurement results,” Radiotekhnika, No. 8, 3–7 (2006).Google Scholar
  10. 10.
    N. A. Pervushina and D. E. Donovskii, “A sliding piecewise-linear approximation procedure with adaptation of the width of the filtering window,” Proc. 12th All-Russ. Conf. on Control Problems (VSPU-2014), Moscow (2014), pp. 8444–8455.Google Scholar
  11. 11.
    S. I. Baskalov, Radio Engineering Circuits and Signals: Textbook, Vysshaya Shkola, Moscow (2000).Google Scholar
  12. 12.
    V. Katkovnik, K. Egiazarian, and J. Astola, Local Approximation in Signal and Image Processing, SPIE Publ., New York (2006).CrossRefGoogle Scholar
  13. 13.
    V. G. Getmanov, Digital Processing of Unsteady Oscillatory Signals Based on Local and Spline Models, Izd. NIYaU MIFI, Moscow (2011).Google Scholar
  14. 14.
    I. V. Dunin-Barkovskii and N. V. Smirnov, Probability Theory and Mathematical Statistics in Technology, Nauka, Moscow (1969).Google Scholar
  15. 15.
    Bureau Central de Magnetism Terrestre,, accessed Dec. 12, 2014.

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  • V. G. Getmanov
    • 1
    • 2
  • R. V. Sidorov
    • 1
  • R. A. Dabagyan
    • 2
  1. 1.Geophysical CenterRussian Academy of SciencesMoscowRussia
  2. 2.National Research Nuclear University MEPhI (Moscow Engineering Physics Institute)MoscowRussia

Personalised recommendations