Measurement Techniques

, Volume 58, Issue 7, pp 807–810 | Cite as

Protection of the Piezoelectric Element of a Shock Acceleration Sensor Against Foreign Actions

  • N. A. Ivashin
  • M. D. Sobolev

The structural diagrams of piezoelectric shock acceleration sensors are improved in order to expand the range of measurement and increase the reliability of the sensors under the conditions of severe loading in the case of a high level of high-frequency oscillations, the transverse component of the acceleration, strain of the mounting surface, and the ambient temperature.


piezoelectric accelerometer piezoelectric shock acceleration sensor elastic glue interlayer mechanical filter 


  1. 1.
    L. A. Kolesnikova, M. M. Mal’gun, L. F. Skrypnikova, and M. D. Sobolev, “Methods of protecting an acceleration sensor against unmeasurable actions,” Izmer. Tekhn., No. 2, 35–36 (1990).Google Scholar
  2. 2.
    A. A. Bazhenov, S. A. Lobastov, and V. I. Yarovikov, “Piezoelectric sensors for measureement of the parameters of shock and impact loads. Part 2,” Metrologiya, No. 11, 19–32 (2003).Google Scholar
  3. 3.
    T. B. Zinchenko, D. B. Kleshchev, A. G. Remezov, and G. B. Remezov, Patent 2410704 RF, “A mechanical filter for a piezoelectric accelerometer,” Izobret. Polezn. Modeli, No. 3 (2011).Google Scholar
  4. 4.
    V. Ye. Ivanov, M. D. Panayot, and M. G. Popruga, Patent 2026556 RF, “Piezoelectric accelerometer,” Izobreteniya, No. 1 (1995).Google Scholar
  5. 5.
    A. A. Gromov, N. A. Ivashin, and M. D. Sobolev, “A piezoelectric acceleration sensor with enhanced resistance to zero drift,” Izmer. Tekhn., No. 3, 42–45 (2009).Google Scholar
  6. 6.
    I. A. Grozman, Piezoceramics, Energiya, Moscow (1972).Google Scholar
  7. 7.
    A. A. Bazhenov, S. A. Lobastov, and V. I. Yarovikov, “A piezoelectric sensor for measurements of the parameters of shock and impact loading. Part 1,” Metrologiya, No. 10, 25–35 (2003).Google Scholar
  8. 8.
    O. P. Kramarov, M. V. Bogush, and V. V. Madorskii, “An elastic interaction of a piezoelectric element with interlayer under the effect of uniaxial quasistatic force,” Physical Phenomena in Polycrystalline Ferroelectrics (1981), pp. 61–66.Google Scholar
  9. 9.
    K. R. Tsekhanskii and V. P. Makeev, “Methods of increasing the conversion efficiency of piezoelectric accelerometers,” Vibration Engineering (1975), pp. 150–153.Google Scholar
  10. 10.
    S. N. Sidorkin, Patent 2018134 RF, “A piezoelectric vibration transducer,” Izobreteniya, No. 15 (1994).Google Scholar
  11. 11.
    N. A. Ivashin and M. D. Sobolev, Patent 2495438 RF, “A piezoelectric shock acceleration sensor,” Izobret. Polezn. Modeli, No. 28 (2013).Google Scholar
  12. 12.
    M. M. Mal’gun and M. D. Sobolev, “Determination of strain sensitivity of piezoelectric shock acceleration transducers,” Metrologiya, No. 6, 60–64 (1986).Google Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  1. 1.Russian Federal Nuclear Center – Zababakhin All-Russia Research Institute of Technical Physics (RFYaTs – VNIITF)SnezhinskRussia

Personalised recommendations