Measurement Techniques

, Volume 57, Issue 12, pp 1463–1468 | Cite as

An Estimate of the Error of Measurements of Radio Brightness Temperature in Radio-Heat Location Systems for Monitoring Meteorological Parameters with Background Noise Compensation


The principles for estimating the errors of measurements of the radio brightness temperature when the background noise is compensated in radio-heat location systems for monitoring meteorological parameters are considered. A compensation signal is generated at the output of an additional antenna channel with a special shape of the radiation pattern. The results of an estimate of this error when using a two-channel dual-mode antenna in the radio-heat location system are presented.


radio-heat location monitoring system metrological parameters background noise radio brightness temperature 


  1. 1.
    V. D. Stepanenko et al., Radio-Heat Location in Meteorology, Gidrometeoizdat, Leningrad (1987).Google Scholar
  2. 2.
    D. M. Karavaev and G. G. Shchukin, “The use of microwave radiometry methods to diagnose the content of raindrops in clouds,” Trudy NITs DZA, Ser. Prikl. Meteorol., No. 5 (533), 99–120 (2004).Google Scholar
  3. 3.
    M. T. Abshaev and Kh. N. Karmov, “The detection of hail centers by a radar-radiometer method,” Proc. 4th All-Union Conf. on Radiometeorology (1978), pp. 81–87.Google Scholar
  4. 4.
    R. A. Ware, “A multichannel radiometric profiler of temperature, humidity, and cloud liquid,” Radio Sci., 38, No. 4, 1–13 (2003).CrossRefGoogle Scholar
  5. 5.
    T. Rose et al., “A network suitable microwave radiometer for operational monitoring of cloudy atmosphere,” Atmosph. Res., 75, No. 3, 183–200 (2005).CrossRefADSGoogle Scholar
  6. 6.
    D. M. Karavaev and G. G. Shchukin, “Microwave radiometer sensing of the atmosphere–underlying surface system,” Vopr. Radiometeorol., 173–192 (2013).Google Scholar
  7. 7.
    L. G. Tuchkov, Natural Noise Radiations in Radio Channels, Sov. Radio, Moscow (1968).Google Scholar
  8. 8.
    N. A. Esepkina, D. V. Korol’kov, and Yu. N. Pariiskii, Radio Telescopes and Radiometers, Nauka, Moscow (1973).Google Scholar
  9. 9.
    Yong Han and Ed R. Westwater, “Analysis and improvement of tipping calibration for ground-based microwave radiometers,” IEEE Trans. Geosci. Remote Sens., 38, No. 3, 1260–1276.Google Scholar
  10. 10.
    V. V. Falen et al., “The construction of adaptive radiometer remote sensing systems,” Trudy NITs DZA, No. 3, 222–238 (2001).Google Scholar
  11. 11.
    E. V. Fedoseeva, Patent No. 91630 RF, “A radiometer system with compensation of adaptive external background interference,” Izobret. Polezn. Modeli, No. 5 (2010).Google Scholar
  12. 12.
    E. V. Fedoseeva and I. N. Rostokin, “A radiometer system with an additional compensation signal generation channel,” Trudy GGO, No. 562, 243–257 (2010).Google Scholar
  13. 13.
    E. V. Fedoseeva and G. G. Shchukin, Problems of Metrological Support for Radio-Heat Location Measurements under External Noisy Interference Conditions: A Monograph, IPTs MI VlGU, Murom (2012).Google Scholar
  14. 14.
    E. V. Fedoseeva, “Errors in compensating background noise in microwave radio-heat location measurements,” Radioprom., No. 2, 105–113 (2012).Google Scholar
  15. 15.
    V. G. Yampol’skii and O. P. Frolov, Antennas and EMC, Radio i Svyaz, Moscow (1983).Google Scholar
  16. 16.
    E. V. Fedoseeva, E. A. Rostokina, and I. N. Rostokin, Patent No. 2300831 RF, “A method of reducing the noise level of an antenna and a two-mode aperture antenna,” Izobret.. Polezn. Modeli, No. 16 (2007).Google Scholar
  17. 17.
    V. V. Nikol’skii, Electrodynamics and Radio Wave Propagation, Nauka, Moscow (1973).Google Scholar
  18. 18.
    L. A. Vainshtein, Diffraction of Electromagnetic and Sound Waves at the Open End of a Waveguide, Sov. Radio, Moscow (1953).Google Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  1. 1.Murom Institute, Branch of the Vladimir State UniversityMuromRussia

Personalised recommendations