Advertisement

Measurement Techniques

, Volume 57, Issue 12, pp 1416–1422 | Cite as

A Helium Cryostat for Investigating the Properties of Massive Solid Resonators with Deep Cooling

  • V. A. Krysanov
  • A. M. Motylev
  • S. I. Oreshkin
  • V. N. Rudenko
Thermal Measurements

A helium cryostat for investigating the properties of massive solid acoustic and optical resonators (of the order of tens of kilograms) for cooling to helium temperatures is modernized and tested. A complete cycle of cooling from room temperature to nitrogen and helium temperatures is carried out. The dynamics of the acoustic characteristics of the model of a gravitational detector at different stages of cooling is tracked. The operating parameters of the new cryostat (the heat inflow and the consumption of coolant) are investigated. Optical inputs were mounted for cryogenic investigations of models with cryogenic mirrors.

Keywords

acoustic and optical resonators cryostat test body gravitational detector low-temperature measurements acoustic oscillations 

Notes

This research was supported by a grant from Russian Foundation for Basic Research, 11-02-12030 OFI-m.

References

  1. 1.
    J. F. J. van den Brand et al., “Einstein Telescope site selection,” J. Phys.: Conf. Ser., 203, 012076 (2010).ADSGoogle Scholar
  2. 2.
    S. Hild, S. Chelkowski, and A. Freise, “Pushing towards the ET sensitivity using “conventional” technology. 2008,” ArXive: 0810.0604v2, accessed Nov. 18, 2014.Google Scholar
  3. 3.
    K. Kuroda et al., “Experimental efforts to detect gravitational waves,” Prog. Theor. Phys. Suppl., 163, 54 (2006).CrossRefADSGoogle Scholar
  4. 4.
    K. Arai et al., “Reduction of thermal fluctuations in a cryogenic laser interferometric gravitational wave detector,” Phys. Rev. Lett., 108, 141101 (2012).CrossRefADSGoogle Scholar
  5. 5.
    A V. Gusev et al., “Reception frequency bandwidth of a gravitational resonant detector with optical readout,” Class. Quant. Grav., 25, No. 5, 055006 (2008).CrossRefADSMathSciNetGoogle Scholar
  6. 6.
    M. Punturo et al., “The third generation of gravitational wave observatories and their science reach,” Class. Quant. Grav., 27, 084007 (2010); Einstein Telescope Design Study (Grant Agreement 211743), www.et.gw.eu, accessed July 29, 2014.
  7. 7.
    L. B. Bezrukov, N. L. Kvashin, A. M. Lotylev, et al., “A precision system for increasing weak opto-acoustic disturbances,” Prib. Tekh. Eksperim., No. 3, 111–118 (2010).Google Scholar
  8. 8.
    R. G. Amamchyan, A. M. Motylev, V. A. Krysanov, et al., “The Q-factor of acoustic modes of a solid-state resonator at low temperatures,” Izmer. Tekhn., No. 1, 59–62 (2011); Measur. Techn., 54, No. 1, 86–90 (2011).Google Scholar
  9. 9.
    P. Astone et al., “Results of the IGEC-2 search for gravitational wave bursts during 2005,” Phys. Rev. D, 76, 102001 (2007).CrossRefADSGoogle Scholar
  10. 10.
    J. W. Ekin, Experimental Techniques for Low-Temperature Measurements Cryostat Design, Material Properties and Superconductor Critical-Current Testing, National Institute of Standards and Technology, Boulder, USA (2006).CrossRefGoogle Scholar
  11. 11.
    G. Ventura and L. Risegari, The Art of Cryogenics. Low-Temperature Experimental Techniques, Elsevier Linacre House, Jordan Hill, Burlington, USA (2008).Google Scholar
  12. 12.
    G. K. White and P. J. Meeson, Experimental Techniques in Low-Temperature Physics, Oxford Univ. Press, Oxford, UK (2002).Google Scholar
  13. 13.
    J. G. Weisend, Handbook of Cryogenic Engineering, Taylor & Francis Publ., London (1988).Google Scholar
  14. 14.
    M. P. Malkov (ed.), A Reference Book of the Physical Technical Principles of Cryogenics, Energiya, Moscow (1973).Google Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  • V. A. Krysanov
    • 1
  • A. M. Motylev
    • 1
  • S. I. Oreshkin
    • 1
  • V. N. Rudenko
    • 1
  1. 1.Shternberg State Astronomical InstituteLomonosov Moscow State University (GAISh MGU)MoscowRussia

Personalised recommendations