Advertisement

Measurement Techniques

, Volume 57, Issue 12, pp 1386–1395 | Cite as

High-Q Factor Optical Whispering-Gallery Mode Microresonators and Their Use in Precision Measurements

  • M. L. Gorodetskii
  • Yu. A. Demchenko
  • D. F. Zaitsev
  • V. N. Krutikov
  • Yu. M. Zolotarevskii
  • V. L. Lyaskovskii
Article

Basic data concerning the use of optical dielectric whispering-gallery mode microresonators are presented. Their properties, fabrication technologies, and ranges of application as well as the most important recent advances are described. Such microresonators may be used in highly stable sources of microwave signals and optical frequency comb oscillators, making it possible to link together optical and radio frequency standards.

Keywords

optical microresonators whispering gallery type modes 

Notes

The present study was prepared with the support of the Ministry of Education and Science of the Russian Federation (Contract No. 14.625.21.0004 of August 25, 2014).

References

  1. 1.
    V. B. Braginsky, M. L. Gorodetsky, and V. S. Ilchenko, “Quality-factor and nonlinear properties of optical whispering-gallery modes,” Phys. Lett. A, No. 137, 393–397 (1989).Google Scholar
  2. 2.
    M. L. Gorodetskii, Optical Microresonators with Giant Q-Factor, Fizmatgiz, Moscow (2011).Google Scholar
  3. 3.
    M. L. Gorodetskii, V. S. Ilchenko, and A. A. Savchenkov, “Ultimate Q of optical microsphere resonators,” Opt. Lett., No. 21, 453–455 (1996).Google Scholar
  4. 4.
    A. A. Savchenko et al., “Optical resonators with ten million finesse,” Opt. Express, 15, 6768–6773 (2007).CrossRefADSGoogle Scholar
  5. 5.
    A. A. Savchenko et al., Patent US 8057283 B1, “Method of fabrication of whispering gallery microresonators” (2011).Google Scholar
  6. 6.
    V. S. Ilchenko and L. Maleki, “Novel whispering-gallery resonators for lasers, modulators and sensors,” Laser Resonators IV: Proc. SPIE, 4270, 120–130, San Jose, CA (2001).Google Scholar
  7. 7.
    L. Maleki et al., Patent US 6472218 B1, “Light Modulation in whispering-gallery mode resonators” (2002).Google Scholar
  8. 8.
    I. S. Grudinin et al., “Ultra high Q crystalline microcavities,” Opt. Commun., No. 265, 33–38 (2006).Google Scholar
  9. 9.
    I. S. Grudinin, V. S. Ilchenko, and L. Maleki, “Ultrahigh optical Q factors of crystalline resonators in the linear regime,” Phys. Rev. A, No. 74, Art. No. 063806 (2006).Google Scholar
  10. 10.
    C. G. Garrett, B. W. Kaiser, and W. L. Bond, “Stimulated emission into optical whispering gallery modes of spheres,” Phys. Rev., No. 124, 1807–1809 (1961).Google Scholar
  11. 11.
    G. Lin et al., “High-Q UV whispering-gallery mode resonators made of angle-cut BBO crystals,” Opt. Express., 19, No. 20, 21372–21378 (2012).CrossRefADSGoogle Scholar
  12. 12.
    T. Chen et al., “Chemically etched ultrahigh-Q wedge resonator on a silicon chip,” Nature Photon, No. 6, 369–373 (2012).Google Scholar
  13. 13.
    M. Borselli, T. J. Johnson, and O. Painter, “Beyond the Rayleigh scattering limit in high-Q silicon microdisks: theory and experiment,” Opt. Express, 5, No.13, 1515–1530 (2005).CrossRefADSGoogle Scholar
  14. 14.
    J. Niehusmann et al., “Ultrahigh-quality factor silicon-on-insulator microring resonator,” Opt. Lett., 24, No. 29, 2861–2863 (2004).CrossRefADSGoogle Scholar
  15. 15.
    A. Guarino et al., “Electro-optically tunable microring resonators in lithium niobate,” Nature Photon, No. 1, 407–410 (2007).Google Scholar
  16. 16.
    G. Ulliac et al., “Ultra-smooth LiNbO3 micro and nano structures for photonic applications,” Microelectr. Eng., No. 88, 2417–2419 (2011).Google Scholar
  17. 17.
    M. Sugiyama et al., “Low-drive voltage LiNbO3 40-Gb/s modulator,” IEEE LEOS Newslett., No. 17, 12–13 (2003).Google Scholar
  18. 18.
    E. I. Gordon and J. D. Rigden, “The Fabry–Perot electro-optic modulator,” Bell Syst. Tech. J., Jan., 155–179 (1963).Google Scholar
  19. 19.
    M. Hossain-Zadeh, “Photonic microwave receivers based on high-Q optical resonance,” in: Laser Resonators, Microresonators, and Beam Control XIV: Proc. SPIE, 8236, 82360 TI–10, San Francisco, CA (2012).Google Scholar
  20. 20.
    D. A. Cohen, M. Hossain-Zadeh, and A. F. J. Levi, “High-Q microphotonic electro-optic modulator,” Solid-State Electronics, No. 45, 1577–1589 (2001).Google Scholar
  21. 21.
    D. V. Strekalov et al., “Efficient upconversion of subterahertz radiation in a high-Q whispering gallery resonator,” Opt. Lett., 6, No. 34, 713–715 (2009).CrossRefADSGoogle Scholar
  22. 22.
    A. Ayazi et al., “All dielectric photonic-assisted wireless receiver,” Opt. Express, 3, No. 16, 1742–1747 (2008).CrossRefADSGoogle Scholar
  23. 23.
    A. B. Matsko, A. A. Savchenko, and V. S. Ilchenko, “On the sensitivity of all-dielectric microwave photonic receivers,” J. Lightwave Technol., 23, No. 28, 3427–3438 (2010).ADSGoogle Scholar
  24. 24.
    T. W. Karras and A. C. Kowalczyk, Patent US 9095012 B12012, “High spur-free dynamic range receiver,” Jan., 2010.Google Scholar
  25. 25.
    X. S. Yao and L. Maleki, “Optoelectronic microwave oscillator,” J. Opt. Soc. Am. B, No. 13, 1725–1735 (1996).Google Scholar
  26. 26.
    Y. Ji, X. S. Yao, and L. Maleki, “Compact optoelectronic oscillator with ultralow phase noise performance,” Electron. Lett., No. 35, 1554–1555 (1999).Google Scholar
  27. 27.
    T. Davidson et al., “High spectral purity CW oscillation and pulse generation in optoelectronic microwave oscillator,” Electron. Lett., No. 35, 1260–1261 (1999).Google Scholar
  28. 28.
    S. J. Fiedziuszko et al., “Dielecric materials, devices, and circuits,” IEEE Trans. Microw. Theory Tech., No. 50, 706–720 (2002).Google Scholar
  29. 29.
    D. Strekalov et al., “Stabilizing an optoelectronic microwave oscillator with photonic filters,” J. Lightwave Technol., No. 21, 3052–3061 (2003).Google Scholar
  30. 30.
    A. B. Matsko et al., “Whispering gallery mode based optoelectronic microwave oscillator,” J. Mod. Opt., No. 50, 2523–2542 (2003).Google Scholar
  31. 31.
    A. Savchenko et al., “Whispering-gallery mode based opto-electronic oscillators,” IEEE Int. Frequency Control Symposium, Newport Beach, CA (2010), pp. 554–557.Google Scholar
  32. 32.
    D. Kossakovski et al., “Multi-wavelength optical source at 12.5 GHz optical spacing based on a coupled optoelectronic oscillator with a whispering gallery mode resonator,” in: Laser Resonators and Beam Control VII: Proc. SPIE, 5333, 167–173, San Jose, CA (2004).Google Scholar
  33. 33.
    L. Maleki et al., “Tunable delay line with interacting whispering-gallery-mode resonators,” Opt. Lett., 6, No. 29, 626–628 (2004).CrossRefADSGoogle Scholar
  34. 34.
    T. J. Kippenberg, S. M. Spillane, K. J. Vahala, “Kerr-nonlinearity optical parametric oscillation in an ultrahigh-Q toroid microcavity,” Phys. Rev. Lett., No. 93, 083904 (2004).Google Scholar
  35. 35.
    A. B. Matsko, A. V. Savchenko, D. Strekalov, et al., “Low threshold optical oscillations in a whisperring gallery mode CaF2 resonator,” Phys. Rev. Lett., No. 93, Art. No. 243905 (2004).Google Scholar
  36. 36.
    A. B. Matsko et al., “Optical hyperparametric oscillations in a whispering-gallery-mode resonator: Threshold and phase diffusion,” Phys. Rev. A, No. 71, Art. No. 033804(10) (2005).Google Scholar
  37. 37.
    T. J. Kippenberg, R. Holzwarth, and S. A. Diddams, “Microresonator-based optical frequency combs,” Science, 6029, No. 332, 555–559 (2011).CrossRefADSGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  • M. L. Gorodetskii
    • 1
  • Yu. A. Demchenko
    • 1
  • D. F. Zaitsev
    • 2
  • V. N. Krutikov
    • 3
    • 4
  • Yu. M. Zolotarevskii
    • 3
  • V. L. Lyaskovskii
    • 3
  1. 1.Lomonosov Moscow State UniversityMoscowRussia
  2. 2.Fazotron–NIIR CorporationMoscowRussia
  3. 3.All-Russia Research Institute of Optophysical Measurements (VNIIOFI)MoscowRussia
  4. 4.National Research University – Higher School of Economics (NIU VShE)MoscowRussia

Personalised recommendations