Measurement Techniques

, Volume 57, Issue 11, pp 1326–1331 | Cite as

Atomic-Force Thermodilatometry of Two-Dimensional Ensembles of Nanoparticles

  • V. A. Kotenev
  • M. R. Kiselev
  • V. I. Zolotarevskii
  • E. M. Kablov
  • A. Yu. Tsivadze

Atomic-force thermodilatometry is used to investigate the change in the morphology of two-dimensional ensembles of iron metal-oxide nanoparticles obtained by reactive evaporation and subsequent programmable low-temperature (20–160°C) annealing. It is shown that when ensembles of nanoparticles are annealed, thermal shrinkage occurs (up to 25% of the volume) due to dehydration, oxidation and possible coalescence and spreading by a viscous flow mechanism.


atomic-force thermodilatometry nanoparticle nanocomposite 


  1. 1.
    I. P. Suzdalev, Nanotechnology: The Physical Chemistry of Nanoclusters, Nanostructures and Nanomaterials, Komkniga, Moscow (2006).Google Scholar
  2. 2.
    R. A. Andrievskii, “The role of nanoscale effects in the interaction between nanostructured materials and environments,” Protect. Met. Phys. Chem. Surf., 49, No. 5, 528–540 (2013).CrossRefGoogle Scholar
  3. 3.
    H. J. Fan, U. Gosele, and M. Zacharias, “Formation of nanotubes and hollow nanoparticles based on Kirkendall and diffusion processes,” Small, 3, 1660–1671 (2007).CrossRefGoogle Scholar
  4. 4.
    L. J. Maissel and R. Glang (eds.), Handbook of Thin Film Technology, McGraw Hill Co., New York (1970).Google Scholar
  5. 5.
    V. A. Kotenev et al., “Vacuum oxidation of freshly deposited iron nanofilms,” Protect. Met. Phys. Chem. Surf., 49, No. 4, 479–484 (2013).CrossRefGoogle Scholar
  6. 6.
    V. A. Kotenev et al., “Gravimetry, resistometry, and Fourier transform infrared spectroscopy for monitoring the corrosivity of the atmosphere with the use of an iron-oxide nanocomposite sensor layer,” Protect. Met. Phys. Chem. Surf., 49, No. 5, 597–603 (2013).CrossRefGoogle Scholar
  7. 7.
    V. A. Kotenev et al., “A system for remote laser monitoring of the degree of environment aggressivity,” Izmer. Tekhn., No. 9, 69–72 (2010); Measur. Techn., 53, No. 9, 1080–1087 (2010).CrossRefGoogle Scholar
  8. 8.
    D. G. Rickerby, G. Valdre, and U. Valdre (eds.), Impact of Electron and Scanning Probe Microscopy on Materials Research, Springer Science+Business Media, Kluwer Academic Publishers, Netherlands (1999).Google Scholar
  9. 9.
    G. Haugstad, Atomic Force Microscopy. Understanding Basic Modes and Advances Applications, John Wiley & Sons, Inc., Hoboken (2012).CrossRefGoogle Scholar
  10. 10.
    V. A. Kotenev et al., “Electrocontact oxidation of iron vacuum nanocondensates,” Fiz.-Khim. Poverkh. Zash. Mater., 47, No. 6, 659–667 (2011).Google Scholar
  11. 11.
    V. A. Ivensen, Phenomenology of Sintering and Some Problems of the Theory, Metallurgiya, Moscow (1985).Google Scholar
  12. 12.
    P. I. Rudakov and V. I. Safonov, Signal and Image Processing, Dialog-MIFI, Moscow (2000).Google Scholar
  13. 13.
    R. Nakamura et al., “Transition in the nanoporous structure of iron oxides during the oxidation of iron nanoparticles and nanowires,” Acta Mater., 57, 4261–4266 (2009).CrossRefGoogle Scholar
  14. 14.
    V. A. Kotenev and A. Yu. Tsivadze, “Probe Raman spectroscopy in monitoring the electrical degradation of thin-film conductors,” Izmer. Tekhn., No. 12, 54–58 (2011); Measur. Techn., 54, No. 12, 1421–1426 (2011).CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  • V. A. Kotenev
    • 1
  • M. R. Kiselev
    • 1
  • V. I. Zolotarevskii
    • 1
  • E. M. Kablov
    • 1
  • A. Yu. Tsivadze
    • 1
  1. 1.Institute of Physical Chemistry and ElectrochemistryRussian Academy of Sciences (IFKhE RAN)MoscowRussia

Personalised recommendations