Advertisement

Measurement Techniques

, Volume 57, Issue 7, pp 777–782 | Cite as

Quadrupole Paul Ion Trap in Complex for Optical Spectroscopy of Multiply Charged Thorium Ions for the Development of a Nuclear Frequency Standard

  • V. I. Troyan
  • P. V. Borisyuk
  • O. S. Vasil’ev
  • A. V. Krasavin
  • S. S. Poteshin
  • A. A. Sysoev
  • D. M. Chernyshev
  • S. I. Donchenko
  • V. G. Pal’chikov
Article

Results from experimental designs intended for the creation of a laboratory model of a complex for optical spectroscopy of multiply charged thorium ions with a quadrupole Paul ion trap possessing a linear configuration for the development of a nuclear frequency standard are described. Preliminary experimental studies intended for the production of singly, doubly, and triply charged thorium ions from the solid-state compound thorium nitrate (IV) by the method of electron-beam evaporation are also presented. It is shown that, relative to singly charged ions, with the use of this method the fractions of triply and doubly charged thorium ions exceed the analogous values for the method of laser ablation used to produce these ions in laboratories in the United States and Germany. The method of electron-beam evaporation is made the basis of a newly developed complex for optical ultra-high resolution spectroscopy.

Keywords

Paul ion trap one-dimensional structures mass spectrometry ion source nuclear frequency standard multiply charged thorium ions 

Notes

The present study was carried out with the support of the Russian Foundation for Basic Research (Grant No. 14-08-00487).

References

  1. 1.
    W. D. Phillips, “Laser cooling and trapping of neutral atoms,” Rev. Mod. Phys., 70, No. 3, 721–741 (1998).ADSCrossRefGoogle Scholar
  2. 2.
    F. Riley, Frequency Standards. Principles and Applications [Russian translation], Fizmatgiz, Moscow (2009).Google Scholar
  3. 3.
    C. W. Chou et al., “Frequency comparison of two high-accuracy Al+ optical clocks,” Phys. Rev. Lett., 104, 070802 (2010).ADSCrossRefGoogle Scholar
  4. 4.
    B. J. Bloom et al., “An optical lattice clock with accuracy and stability at the 10–18 level,” Nature, 506, 71–75 (2014).ADSCrossRefGoogle Scholar
  5. 5.
    B. R. Beck et al., “Energy splitting of the ground-state doublet in the nucleus 229Th,” Phys. Rev. Lett., 98, 142501-1–142501-4 (2007).ADSGoogle Scholar
  6. 6.
    C. J. Campbell et al., “Multiply charged thorium crystals for nuclear laser spectroscopy,” Phys. Rev. Lett., 102, 233004-1–233004-4 (2009).ADSGoogle Scholar
  7. 7.
    E. Peik et al., “Prospects for a nuclear optical frequency standard based on Thorium-229,” http://arxiv.org/abs/0812.3548, accessed 06.06.2014.
  8. 8.
    C. J. Campbell et al., “A single-ion nuclear clock for metrology at the 19th decimal place,” http://arxiv.org/abs/110/2490, accessed 06.06.2014.
  9. 9.
    S. G. Porsev et al., “Excitation of the isomeric 229Th nuclear state via an electronic bridge process in 229 Th+,” Phys. Rev. Lett., 105, 182501-1–182501-4 (2010).ADSCrossRefGoogle Scholar
  10. 10.
    E. V. Tkalya and L. P. Yatsenko, “Creation of inverse population in the 229 Th ground-state doublet by means of a narrowband laser,” Laser Phys. Lett., 10, 105808-1–105808-6 (2013).ADSCrossRefGoogle Scholar
  11. 11.
    V. I. Troyan et al., “Generation of thorium ions by laser ablation and inductively coupled plasma techniques for optical nuclear spectroscopy,” Laser Phys. Lett., 10, 105301-1–105301-6 (2013).ADSCrossRefGoogle Scholar
  12. 12.
    A. V. Steele, “Barium ion cavity QED and triply ionized thorium ion trapping,” https://smartech.gatech.edu/bitstream/1853/26530/1/steele_adam_v_200812_phd.pdf, accessed 06.06.2014.
  13. 13.
    K. Zimmermann, “Experiments towards optical nuclear spectroscopy with Thorium-229,” https://www.ptb.de/cms/fileadmin/internet/fachabteilungen/abteilung_4/4.4_zeit_und_frequenz/pdf/2010_Zimmermann_Kai_Dissertation.pdf, accessed 06.06.2014.

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  • V. I. Troyan
    • 1
  • P. V. Borisyuk
    • 1
  • O. S. Vasil’ev
    • 1
  • A. V. Krasavin
    • 1
  • S. S. Poteshin
    • 1
  • A. A. Sysoev
    • 1
  • D. M. Chernyshev
    • 1
  • S. I. Donchenko
    • 2
  • V. G. Pal’chikov
    • 2
  1. 1.National Nuclear Research University – Moscow Engineering-Physics Institute (NIYaU MIFI)MoscowRussia
  2. 2.All-Russia Research Institute of Physicotechnical and Radio Measurements (VNIIFTRI)MendeleevoRussia

Personalised recommendations