Advertisement

Measurement Techniques

, Volume 55, Issue 4, pp 400–405 | Cite as

Investigation of the metrological characteristics of a scanning probe measuring microscope using TGZ type calibration gratings

  • K. V. Gogolinskii
  • K. L. Gubskii
  • A. P. Kuznetsov
  • V. N. Reshetov
  • I. I. Maslenikov
  • S. S. Golubev
  • V. G. Lysenko
  • S. I. Rumyantsev
Optophysical Measurements

The structure and operating principle of the NanoSkan-3Di scanning probe microscope are briefly described. An investigation of the metrological characteristics of this measuring system using linear TGZ-type gratings demonstrated the high level of reproducibility of the measurements and showed that the results agree with the data obtained in a calibration at the PTB (Germany).

Keywords

scanning probe microscope three-coordinate heterodyne interferometer topography nanometer structures calibration gratings 

References

  1. 1.
    K. V. Gogolinskii, N. A. Lvova, and A. S. Useinov, “The use of scanning probe microscopes and nanohardness gauges to investigate the mechanical properties of solid materials at the nanolevel,” Zavod. Lab., 73, No. 6, 28–36 (2007).Google Scholar
  2. 2.
    S. S. Useinov et al., “Measurement of the mechanical properties of materials with nanometer spatial resolution,” Nanoindustriya, No. 2, 30–35 (2010).Google Scholar
  3. 3.
    E. O. Baranova et al., “Calculation of the stress-strain state of the probe in static measurements with the NanoSkan scanning probe microscope,” Datch. Sistemy, No. 3 (130), 49–52 (2010).Google Scholar
  4. 4.
    V. V. Meshcheryakov and A. V. Meshcheryakov, “Measuring schemes for the capacitive sensors of nanopositioning systems of scanning probe microscopes,” Datch. Sistemy, No. 3 (130), 46–48 (2010).Google Scholar
  5. 5.
    K. V. Gogolinskii et al., Patent No. 96429 RF, “The scanning probe microscope – a nanohardness gauge, combined with an optical line measurement system,” Izobret. Polez. Modeli, No. 21 (2010).Google Scholar
  6. 6.
    V. V. Soloviev et al., “A metrological system for measuring the relief and roughness parameters of surfaces in the nanometer range,” Zakonodat. Priklad. Metrol., No. 5, 30–37 (2010).Google Scholar
  7. 7.
    S. S. Golubev and S. N. Golubev, “Traceability of measurement results in the nanometer range to the units of the International System of Units of physical quantities,” Izmer. Tekhn., No. 11, 13–17 (2010); Measur. Techn., 53, No. 11, 1209–1214 (2010).Google Scholar
  8. 8.
    G. Dai et al., “Metrological large range scanning probe microscope,” Rev. Sci. Instrum., 76, No. 4, 962–969 (2004).ADSCrossRefGoogle Scholar
  9. 9.
    Guide to the Expression of Uncertainty in Measurement [Russian translation], VNIIM, St. Petersburg (1999).Google Scholar

Copyright information

© Springer Science+Business Media, Inc. 2012

Authors and Affiliations

  • K. V. Gogolinskii
    • 1
  • K. L. Gubskii
    • 2
  • A. P. Kuznetsov
    • 2
  • V. N. Reshetov
    • 2
  • I. I. Maslenikov
    • 3
  • S. S. Golubev
    • 4
  • V. G. Lysenko
    • 4
  • S. I. Rumyantsev
    • 4
  1. 1.Technological Institute of Superhard and New Carbon MaterialsTroitskRussia
  2. 2.National Nuclear Research University – Moscow Engineering-Physics Institute (NIYaU MIFI)MoscowRussia
  3. 3.Moscow Institute of Physics and Technology (MFTI)DolgoprudnyiRussia
  4. 4.All-Russia Research Institute of Metrological Service (VNIIMS)MoscowRussia

Personalised recommendations