Skip to main content
Log in

Laser displacement interferometers with subnanometer resolution in absolute ballistic gravimeters

  • Fundamental Problems in Metrology
  • Published:
Measurement Techniques Aims and scope

This is a description of the overall structure of an absolute ballistic gravimeter in which a test object moves freely in a vacuum in the gravitational field. This system is intended for determining the acceleration of gravity using measurements of length and time intervals in the equation of motion of the test object. These intervals are measured by a laser displacement interferometer and a system for precise measurement of time intervals, which are incorporated in the gravimeter. Uncertainties in the measured acceleration of gravity and metrological support of absolute ballistic gravimeters for length and time measurements are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1

Similar content being viewed by others

References

  1. G. Boedecker, “World gravity standards – present status and future challenges,” Metrologia, 39, No. 5, 429–433 (2002).

    Article  ADS  Google Scholar 

  2. W. Torge, “The changing role of gravity reference networks,” IAG Symposia, 119, 1–10 (1998).

    Google Scholar 

  3. S. Merlet et al., “Microgravity investigations for the LNE watt balance project,” Metrologia, 45, No. 3, 265–274 (2008).

    Article  ADS  Google Scholar 

  4. M. J. T. Mills and T. J. Quinn, “Primary methods for the measurement of amount of substance,” Metrologia, 38, No. 4, 288–296 (2001).

    Article  ADS  Google Scholar 

  5. International Vocabulary of Metrology – Basic and General Concepts and Associated Terms (VIM), JCGM (2008).

  6. L. Vitushkin, “Measurement standards in gravimetry,” in: Terrestrial Gravimetry. Static and Mobile Measurements TGSMM-2007: Proc. Int. Symp., Russian State Research Center Elektropribor, St. Petersburg, Russia (2008), pp. 98–105.

  7. T. M. Niebauer et al., “A new generation of absolute gravimeters,” Metrologia, 32, No. 3, 159–180 (1995).

    Article  ADS  Google Scholar 

  8. R. G. Hipkin, “Absolute determination of the vertical gradient of gravity,” Metrologia, 36, No. 1, 47–52 (1999).

    Article  ADS  Google Scholar 

  9. A. Germak, S. Desogus, and C. Origlia, “Interferometer for the IMGC rise-and-fall absolute gravimeter,” Metrologia, 39, No. 5, 471–475 (2002).

    Article  ADS  Google Scholar 

  10. P. G. Nelson, “An active vibroisolation system for inertial reference and precision measurement,” Rev. Sci. Instrum., 45, No. 5, 2069–2075.

  11. E. L. Canuteson and M. A. Zumberge, “Fiber-optic extrinsic Fabry–Perot vibration isolated interferometer for use in absolute gravity meters,” Appl. Opt., 35, No. 19, 3500–3505 (1996).

    Article  ADS  Google Scholar 

  12. Yu. F. Stus, E. N. Kalish, and M. G. Smirnov, “The new measuring-computing system for a laser ballistic gravimeter,” in: Terrestrial Gravimetry. Static and Mobile Measurements, TGSMM-2007: Proc. Int Symp., Russian State Research Center Elektropribor, St. Petersburg, Russia (2008), pp. 106–111.

  13. L. Vitushkin, O. Orlov, and V. Nalivaev, “Test measurements of free-fall acceleration using the FG5-108 gravimeter with a compact diode-pumped solid-state Nd:YVO4/KTP/I2 laser at a wavelength of 532 nm,” ibid., pp. 143–146.

  14. A. L. Vitouchkine and J. E. Faller, “Measurement results with a small cam-driven absolute gravimeter,” Metrologia, 39, No. 5, 465–469 (2002).

    Article  ADS  Google Scholar 

  15. L. Vitushkin et al., The 7th Int. Comparison of Absolute Gravimeters ICAG-2005 at the BIPM. Organization and Preliminary Results: Proc. 1st Int. Symp., Int. Gravity Field Service “Gravity Field of the Earth,” Istanbul, Turkey, General Command of Mapping Special Issue 18 (2007), pp. 382–387.

  16. Ch. Rothleitner et al., “Development of new free-fall absolute gravimeter,” Metrologia, 46, No. 3, 283–297 (2009).

    Article  ADS  Google Scholar 

  17. S. Merlet et al., “Operating an atom interferometer beyond its linear range,” Metrologia, 46, No. 1, 87–94 (2009).

    Article  MathSciNet  ADS  Google Scholar 

  18. L. Vitushkin et al., “Investigation of the influence of the short-time interval frequency instability on the measurement of free-fall acceleration using an absolute gravimeter,” Director’s Report on the Activity and Management BIPM, July 1, 2004 – June 30, 2005 (2005), Vol. 6, pp. 196–197.

  19. N. Bobroff, “Recent advances in displacement measuring interferometry,” Measur. Sci. Technol., 4, No. 9, 907–926 (1993).

    Article  ADS  Google Scholar 

  20. Mutual Recognition of National Measurement Standards and of Calibration and Measurement Certificates Issued by National Metrology Institutes, Int. Comm. on Weights and Measures, BIPM, France (1999).

  21. I. Murata, “A transportable apparatus for absolute measurement of gravity,” Bull. Earthquake Res. Inst., 53, 49–130 (1978).

    Google Scholar 

  22. H. Hu et al., “Improvements of the MPG-2 transportable absolute ballistic gravimeter,” Metrologia, 47, No. 5, 575–582 (2010).

    Article  ADS  Google Scholar 

  23. C. Rothleitner et al., “A method for adjusting the centre of mass of a freely falling body in absolute gravimetry,” Metrologia, 44, No. 3, 234–241 (2007).

    Article  ADS  Google Scholar 

  24. V. V. Lyubimov, V. L. Shur, and I. Sh. Etsin, “Diffraction phenomena in a two-beam laser interferometer,” Opt. Spektrosk., 45, No. 2, 204–207 (1978).

    ADS  Google Scholar 

  25. G. Mana, “Diffraction effects in optical interferometers illuminated by laser sources,” Metrologia, 26, No. 2, 87–93 (1989).

    Article  ADS  Google Scholar 

  26. V. P. Koronkevich, V. S. Sobolev, and Yu. N. Dubnishchev, Laser Interferometry [in Russian], Nauka, Moscow (1983), Ch. 2.

    Google Scholar 

  27. D. van Westrum and T. M. Niebauer, “The diffraction correction for absolute gravimeters,” Metrologia, 40, No. 5, 258–263 (2003).

    Article  ADS  Google Scholar 

  28. L. Robertsson, “On the diffraction correction in absolute gravimetry,” Metrologia, 44, No. 1, 35–39 (2007).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L. F. Vitushkin.

Additional information

Translated from Izmeritel’naya Tekhnika, No. 3, pp. 3–8, March, 2012.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Vitushkin, L.F., Orlov, O.A., Germak, A. et al. Laser displacement interferometers with subnanometer resolution in absolute ballistic gravimeters. Meas Tech 55, 221–228 (2012). https://doi.org/10.1007/s11018-012-9944-8

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11018-012-9944-8

Keywords

Navigation