Advertisement

Measurement Techniques

, Volume 55, Issue 3, pp 221–228 | Cite as

Laser displacement interferometers with subnanometer resolution in absolute ballistic gravimeters

  • L. F. Vitushkin
  • O. A. Orlov
  • A. Germak
  • G. D’Agostino
Fundamental Problems in Metrology

This is a description of the overall structure of an absolute ballistic gravimeter in which a test object moves freely in a vacuum in the gravitational field. This system is intended for determining the acceleration of gravity using measurements of length and time intervals in the equation of motion of the test object. These intervals are measured by a laser displacement interferometer and a system for precise measurement of time intervals, which are incorporated in the gravimeter. Uncertainties in the measured acceleration of gravity and metrological support of absolute ballistic gravimeters for length and time measurements are discussed.

Keywords

nanometrology dynamic measurements absolute gravimeter laser displacement interferometer 

References

  1. 1.
    G. Boedecker, “World gravity standards – present status and future challenges,” Metrologia, 39, No. 5, 429–433 (2002).ADSCrossRefGoogle Scholar
  2. 2.
    W. Torge, “The changing role of gravity reference networks,” IAG Symposia, 119, 1–10 (1998).Google Scholar
  3. 3.
    S. Merlet et al., “Microgravity investigations for the LNE watt balance project,” Metrologia, 45, No. 3, 265–274 (2008).ADSCrossRefGoogle Scholar
  4. 4.
    M. J. T. Mills and T. J. Quinn, “Primary methods for the measurement of amount of substance,” Metrologia, 38, No. 4, 288–296 (2001).ADSCrossRefGoogle Scholar
  5. 5.
    International Vocabulary of Metrology – Basic and General Concepts and Associated Terms (VIM), JCGM (2008).Google Scholar
  6. 6.
    L. Vitushkin, “Measurement standards in gravimetry,” in: Terrestrial Gravimetry. Static and Mobile Measurements TGSMM-2007: Proc. Int. Symp., Russian State Research Center Elektropribor, St. Petersburg, Russia (2008), pp. 98–105.Google Scholar
  7. 7.
    T. M. Niebauer et al., “A new generation of absolute gravimeters,” Metrologia, 32, No. 3, 159–180 (1995).ADSCrossRefGoogle Scholar
  8. 8.
    R. G. Hipkin, “Absolute determination of the vertical gradient of gravity,” Metrologia, 36, No. 1, 47–52 (1999).ADSCrossRefGoogle Scholar
  9. 9.
    A. Germak, S. Desogus, and C. Origlia, “Interferometer for the IMGC rise-and-fall absolute gravimeter,” Metrologia, 39, No. 5, 471–475 (2002).ADSCrossRefGoogle Scholar
  10. 10.
    P. G. Nelson, “An active vibroisolation system for inertial reference and precision measurement,” Rev. Sci. Instrum., 45, No. 5, 2069–2075.Google Scholar
  11. 11.
    E. L. Canuteson and M. A. Zumberge, “Fiber-optic extrinsic Fabry–Perot vibration isolated interferometer for use in absolute gravity meters,” Appl. Opt., 35, No. 19, 3500–3505 (1996).ADSCrossRefGoogle Scholar
  12. 12.
    Yu. F. Stus, E. N. Kalish, and M. G. Smirnov, “The new measuring-computing system for a laser ballistic gravimeter,” in: Terrestrial Gravimetry. Static and Mobile Measurements, TGSMM-2007: Proc. Int Symp., Russian State Research Center Elektropribor, St. Petersburg, Russia (2008), pp. 106–111.Google Scholar
  13. 13.
    L. Vitushkin, O. Orlov, and V. Nalivaev, “Test measurements of free-fall acceleration using the FG5-108 gravimeter with a compact diode-pumped solid-state Nd:YVO4/KTP/I2 laser at a wavelength of 532 nm,” ibid., pp. 143–146.Google Scholar
  14. 14.
    A. L. Vitouchkine and J. E. Faller, “Measurement results with a small cam-driven absolute gravimeter,” Metrologia, 39, No. 5, 465–469 (2002).ADSCrossRefGoogle Scholar
  15. 15.
    L. Vitushkin et al., The 7th Int. Comparison of Absolute Gravimeters ICAG-2005 at the BIPM. Organization and Preliminary Results: Proc. 1st Int. Symp., Int. Gravity Field Service “Gravity Field of the Earth,” Istanbul, Turkey, General Command of Mapping Special Issue 18 (2007), pp. 382–387.Google Scholar
  16. 16.
    Ch. Rothleitner et al., “Development of new free-fall absolute gravimeter,” Metrologia, 46, No. 3, 283–297 (2009).ADSCrossRefGoogle Scholar
  17. 17.
    S. Merlet et al., “Operating an atom interferometer beyond its linear range,” Metrologia, 46, No. 1, 87–94 (2009).MathSciNetADSCrossRefGoogle Scholar
  18. 18.
    L. Vitushkin et al., “Investigation of the influence of the short-time interval frequency instability on the measurement of free-fall acceleration using an absolute gravimeter,” Director’s Report on the Activity and Management BIPM, July 1, 2004 – June 30, 2005 (2005), Vol. 6, pp. 196–197.Google Scholar
  19. 19.
    N. Bobroff, “Recent advances in displacement measuring interferometry,” Measur. Sci. Technol., 4, No. 9, 907–926 (1993).ADSCrossRefGoogle Scholar
  20. 20.
    Mutual Recognition of National Measurement Standards and of Calibration and Measurement Certificates Issued by National Metrology Institutes, Int. Comm. on Weights and Measures, BIPM, France (1999).Google Scholar
  21. 21.
    I. Murata, “A transportable apparatus for absolute measurement of gravity,” Bull. Earthquake Res. Inst., 53, 49–130 (1978).Google Scholar
  22. 22.
    H. Hu et al., “Improvements of the MPG-2 transportable absolute ballistic gravimeter,” Metrologia, 47, No. 5, 575–582 (2010).ADSCrossRefGoogle Scholar
  23. 23.
    C. Rothleitner et al., “A method for adjusting the centre of mass of a freely falling body in absolute gravimetry,” Metrologia, 44, No. 3, 234–241 (2007).ADSCrossRefGoogle Scholar
  24. 24.
    V. V. Lyubimov, V. L. Shur, and I. Sh. Etsin, “Diffraction phenomena in a two-beam laser interferometer,” Opt. Spektrosk., 45, No. 2, 204–207 (1978).ADSGoogle Scholar
  25. 25.
    G. Mana, “Diffraction effects in optical interferometers illuminated by laser sources,” Metrologia, 26, No. 2, 87–93 (1989).ADSCrossRefGoogle Scholar
  26. 26.
    V. P. Koronkevich, V. S. Sobolev, and Yu. N. Dubnishchev, Laser Interferometry [in Russian], Nauka, Moscow (1983), Ch. 2.Google Scholar
  27. 27.
    D. van Westrum and T. M. Niebauer, “The diffraction correction for absolute gravimeters,” Metrologia, 40, No. 5, 258–263 (2003).ADSCrossRefGoogle Scholar
  28. 28.
    L. Robertsson, “On the diffraction correction in absolute gravimetry,” Metrologia, 44, No. 1, 35–39 (2007).ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, Inc. 2012

Authors and Affiliations

  • L. F. Vitushkin
    • 1
  • O. A. Orlov
    • 1
  • A. Germak
    • 2
  • G. D’Agostino
    • 2
  1. 1.Mendeleev All-Russia Research Institute of Metrology (VNIIM)St. PetersburgRussia
  2. 2.National Institute of Metrology (INRIM)TurinItaly

Personalised recommendations