Measurement Techniques

, Volume 54, Issue 12, pp 1346–1352 | Cite as

Use of mathematical modeling for measurements of nanodimensions in microelectronics

  • A. V. Nikitin

An “exact” mathematical model and a “simplified” mathematical model that each model video signals in a scanning electron microscope are developed. It is shown that the simplified model practically conforms to the exact model while requiring substantially lesser overhead of computational resources. Examples of the use of the models in the development of a new generation of application algorithms for precision measurement of the nanodimensional elements of modern integrated circuits are given.


mathematical modeling scanning electron microscopy microelectronics nanodimension 


  1. 1.
    J. Browdie and J. Merry, Physical Foundations of Microtechnology [Translated from English, edited by A. V. Shal-nov], Mir, Moscow (1985).Google Scholar
  2. 2.
    International Technology Roadmap for Semiconductors (ITRS), SIA, New York (2006).Google Scholar
  3. 3.
    M. T. Postek, “Critical issue in scanning electron microscope metrology,” J. Res. Natl. Inst. Stand. Technol., No. 99, 641 (1994).Google Scholar
  4. 4.
    G. D. Archard, J. Appl. Phys., No. 32, 1505 (1961).Google Scholar
  5. 5.
    R. M. Ammosov, V. V. Kuznetsova, and A. V. Nikitin, “Analysis of a video signal from a ledge in a scanning electron microscope,” Elektron. Tekhn. Ser. 3. Microelektronika, Iss. 3, 19–23 (1984).Google Scholar
  6. 6.
    J. R. Lowney, “Application of Monte Carlo to simulations to critical dimension metrology in a scanning electron microscope,” Scan. Microscopy, No. 10 (3), 667–678 (1996).Google Scholar
  7. 7.
    J. R. Lowney, “MONSEL II. Monte Carlo simulation of SEM signals for linewidth metrology,” Microbeam Anal., No. 4, 131–136 (1995).Google Scholar
  8. 8.
    S. Babin, S. Borisov, and A. Ivanchikov, “Monte Carlo modeling of SEM using CHARIOT software and opportunity for calibration of linewidth metrology,” Scanning, 29, No. 2, 80 (2007).Google Scholar
  9. 9.
    J. S. Villarrubia et al., “Scanning electron microscope analog of scatterometry,” Proc. SPIE, 4689, 304 (2002).ADSCrossRefGoogle Scholar
  10. 10.
    M. Yu. Ilyin et al., Patent 2134864 RF, “A method of measurement of linear dimensions,” Izobret., No. 23 (1999).Google Scholar
  11. 11.
    M. P. Seach and W. A. Dench, “Quantitative electron spectroscopy of surfaces: a standard data base for electron unelastic mean free paths in solids,” Surface and Interface Anal., 1, No. 1, 2–11 (1979).CrossRefGoogle Scholar
  12. 12.
    R. M. Ammosov, V. V. Kuznetsova, and A. V. Nikitin, “Characteristics of a flux of secondary electrons forming a video signal in SEM,” Elektron. Tekhn. Ser. 3. Microelektronika, Iss. 5–6, 43–49 (1982).Google Scholar
  13. 13.
    M. Tortonese et al., “Sub 50-nm isolated line and trench width artifacts for CD metrology,” Proc. SPIE, 5357, 647–656 (2004).CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, Inc. 2012

Authors and Affiliations

  1. 1.Institute of Arts and Information Technologies, DivisionSt. PetersburgRussia

Personalised recommendations