Advertisement

Measurement Techniques

, Volume 54, Issue 10, pp 1142–1150 | Cite as

The contrasting method in noise thermometry as a development of the ideas of P. G. Strelkov

  • A. G. Cherevko
Article

The place of the contrasting method among other methods of noise thermometry and its influence on the development of these methods is determined. The results of an investigation of the thermal characteristics of refractory metals and alloys on samples heated by a current with a direct measurement of their thermal noise and its oscillations are presented.

Keywords

absolute temperature noise thermometer contrasting method thermal noise shot noise 

Notes

This research was supported by the Ministry of Education and Science of Russia (State Contract Nos. 14.740.11.0058, 14.740.11.0067, and 14.740.11.0361).

References

  1. 1.
    A. S. Borovic-Romanov and P. G. Strelkov, “A new type of gas thermometer and the determination of the boiling point of hydrogen,” Dokl. Akad. Nauk SSSR, 83, No. 1, 59–61 (1952).Google Scholar
  2. 2.
    N. B. Callen and T. A. Welton, “Irreversibility and generalized noise,” Phys. Rev., 83, No. 1, 34–39 (1951).MathSciNetADSMATHCrossRefGoogle Scholar
  3. 3.
    S. A. Trigger et al., “Remarks on the Nyquist and Callen–Welton theorems,” Physica A: Statistical Mechanics and Its Applications, 374, No. 1, 77–84 (2007).ADSCrossRefGoogle Scholar
  4. 4.
    H. Nyquist, “Thermal agitation of electric charge in a conductor,” Phys. Rev., Ser. 2, 32, No. 1, 110–113 (1928).MathSciNetGoogle Scholar
  5. 5.
    D. R. White, R. L. Shepard, and J. C. Gallop, “The status of Johnson noise thermometry,” Metrologia, 33, 325–335 (1996).ADSCrossRefGoogle Scholar
  6. 6.
    L. G. Rubin, “Cryogenic thermometry: a review of progress since 1982,” Cryogenics, 37, No. 7, 341–356 (1997).CrossRefGoogle Scholar
  7. 7.
    W. L. Tew et al., “Progress in noise thermometry at 505 K and 693 K using quantized voltage noise ratio spectra,” Int. J. Thermophys., 31, 1719–1738 (2010).ADSCrossRefGoogle Scholar
  8. 8.
    R. A. Kamper, D. D. Zigourt, and R. Reidbo, “Measurement of noise temperature in the millikelvin range,” Proc. IEEE, 5, No. 9, 102–3 (1971).Google Scholar
  9. 9.
    R. A. Kamper and J. E. Zimmerman, “Noise thermometry with the Josephson effect,” J. Appl. Phys., 42, No. 1, 132–136 (1971).ADSCrossRefGoogle Scholar
  10. 10.
    R. A. Kamper, “Survey of noise thermometry,” Temperature, Its Measurement and Control in Science and Industry, 4, 349–354 (1972).Google Scholar
  11. 11.
    R. A. Webb, R. P. Giffard, and J. C. Wheatley, “Relationship between Johnson noise temperature and magnetic temperature for powdered cerium magnesium nitrate,” Phys. Lett., Ser. A, 41, No. 1, 1–2 (1972).ADSCrossRefGoogle Scholar
  12. 12.
    R. A. Webb, R. P. Giffard, and J. C. Wheatley, “Noise thermometry at ultralow temperatures,” J. Low Temp. Phys., 13, No. 3, 4, 383–429 (1973).ADSCrossRefGoogle Scholar
  13. 13.
    J. C. Wheatley and R. A. Webb, “Millikelvin temperatures measured with noise thermometers,” Science, 4109, 241–248 (1973).ADSCrossRefGoogle Scholar
  14. 14.
    K. Zh. Borkovskii and I. V. Bleilok, “A new method of noise thermometry,” Pribory Nauch. Issled., No. 2, 3–16 (1974).Google Scholar
  15. 15.
    Yu. S. Ivashchenko, Yu. G. Korobchenko, and T. S. Bondarenko, “Measurement of the noise temperature of a plasma by an inductive transducer,” Teplofiz. Vys. Temp., 14, No. 4, 841–845 (1976).ADSGoogle Scholar
  16. 16.
    Yu. S. Ivashchenko, Yu. G. Korobchenko, and T. S. Bondarenko, “Measurement of the noise temperature of a plasma of the products of combustion using a contactless capacitive transducer,” Teplofiz. Vys. Temp., 14, No. 6, 1261–1265 (1976).ADSGoogle Scholar
  17. 17.
    H. Klein, G. Klempt, and L. Storm, “Measurement of the thermodynamic temperature of 4He at various vapour pressures by a noise thermometer,” Metrologia, 15, No. 3, 143–154 (1979).ADSCrossRefGoogle Scholar
  18. 18.
    M. Decreton et al., “High temperature measurements by noise thermometry,” High Temp. – High Press., 12, 395–402 (1980).Google Scholar
  19. 19.
    A. A. Borisov et al., “A noise thermometer for nuclear reactors,” Izmer. Tekhn., No. 5, 54–56 (1982); Measur. Techn., 25, No. 5, 426–429 (1982).Google Scholar
  20. 20.
    A. G. Cherevko, N. I. Belkin, and V. D. Chirkov, Inventor’s Certificate 1078261 SSSR, “An impulse thermal noise thermometer,” Otkryt. Izobret., No. 9 (1984).Google Scholar
  21. 21.
    A. G. Cherevko et al., Inventor’s Certificate 1167450 SSSR, “An impulse thermal noise thermometer,” Otkryt. Izobret., No. 26 (1985).Google Scholar
  22. 22.
    A. G. Cherevko, “Minimization of the effect of excess noise on the measurement of noise temperature,” Vestn. SIBGUTI, No. 2, 58–61 (2008).Google Scholar
  23. 23.
    J. C. Gallop and B. W. Petley, “Josephson noise thermometry with HTS devices,” IEEE Trans. Instrum. and Measur., 44, No. 2, 234–237 (1995).CrossRefGoogle Scholar
  24. 24.
    J. Li et al., “Current sensing noise thermometry for millikelvin temperatures using a DC SQUID preamplifier,” Physica B, 280, 544–545 (2000).ADSCrossRefGoogle Scholar
  25. 25.
    T. C. P. Chui, “SQUID-based high-resolution thermometer,” Cryogenics, 41, 407–414 (2001).ADSCrossRefGoogle Scholar
  26. 26.
    R. Gati et al., “Noise thermometry with two weakly cooled Bose-Einstein condensates,” Phys. Rev. Lett., 96, 13404 (2006).CrossRefGoogle Scholar
  27. 27.
    J. C. Rodriguez-Luna and J. de Urquijo, “A simple, sensitive circuit to measure Boltzmann’s constant from Johnson’s noise,” Europ. J. Phys., 31, 675–679 (2010).CrossRefGoogle Scholar
  28. 28.
    G. B. Garrison and A. W. Lowson, “An absolute noise thermometer for high temperatures and high pressures,” Rev. Sci. Instrum., 20, 785–794 (1949).ADSCrossRefGoogle Scholar
  29. 29.
    V. I. Gilevskii, Inventor’s Certificate 475516 SSSR, “A method of measuring temperature,” Byull. Izobret., No. 24 (1975).Google Scholar
  30. 30.
    H. Brixy, “Temperature measurement in nuclear reactors by noise thermometry,” Nucl. Instrum. & Meth., 97, No. 1, 75–80 (1971).ADSCrossRefGoogle Scholar
  31. 31.
    I. Fujishiro et al., “Noise thermometry under high pressure,” Rev. Phys. Chem. Jap., Spec. Iss., 818–823 (1975).Google Scholar
  32. 32.
    H. Brixy, “Rauschthermometrie – ein genaues Temperature Verfahren,” Elektronik, 59, No. 18, 18–26 (1977).Google Scholar
  33. 33.
    H. Brixy et al., “Rauschthermometrie. Teil 1,” Techn. Mess. Atm., 45, No. 10, 351–354 (1978).Google Scholar
  34. 34.
    H. Brixy et al., “Rauschthermometrie. Teil 2,” Techn. Mess. Atm., 45, No. 11, 387–393 (1978).Google Scholar
  35. 35.
    A. B. Kiselevskii et al., “A check of semiconductor resistance converters by the noise thermometry method,” Izmer. Tekhn., No. 3, 49–51 (1982); Measur. Techn., 25, No. 3, 244–246 (1982).Google Scholar
  36. 36.
    N. A. Sokolov, The Development and Investigation of a Precision Noise Thermometer: Candidate Dissertation, Leningrad (1984).Google Scholar
  37. 37.
    T. J. Zhang and S. Xue, “A noise thermometry investigation of the melting point of gallium at the NIM,” Metrologia, 43, 273–277 (2006).ADSCrossRefGoogle Scholar
  38. 38.
    W. L. Tew et al., “Johnson noise thermometry near the zinc freezing point using resistance-based scaling,” Int. J. Thermophys., 28, 629–645 (2007).ADSCrossRefGoogle Scholar
  39. 39.
    S. Benz et al., “Experimental determination of Boltzmann’s constant. Electronic measurement of the Boltzmann constant with a quantum-voltage-calibrated Johnson noise thermometer,” C. R. Physique, 10, 849–858 (2009).ADSCrossRefGoogle Scholar
  40. 40.
    H. Persey and E. C. Pyatt, “Measurement of equivalent noise resistance of a noise thermometer amplifier,” J. Sci. Instrum., 36, No. 5, 260–264 (1959).ADSCrossRefGoogle Scholar
  41. 41.
    L. Crovini and A. Actis, “Noise thermometry in the range 630–962°C,” Metrologia, 14, No. 2, 69–78 (1978).ADSCrossRefGoogle Scholar
  42. 42.
    H. I. Fink, “A new absolute noise thermometer of low temperatures,” Canad. J. Phys., 37, No. 12, 1397–1406 (1959).ADSCrossRefGoogle Scholar
  43. 43.
    Ya. A. Kraftmakher and A. G. Cherevko, “Noise correlation thermometer,” Phys. Stat. Sol. (a), 14, K35–K38 (1972).ADSCrossRefGoogle Scholar
  44. 44.
    Ya. A. Kraftmakher and A. G. Cherevko, “Determination of wire sample temperature by thermal noise,” in: Abstr. 4th Europ. Conf. on Thermophysical Properties of Solids at High Temperatures, Orleans (1974), p. F4.Google Scholar
  45. 45.
    Ya. A. Kraftmakher and A. G. Cherevko, “Measurement of temperature oscillations of wire samples using their thermal noise,” Phys. Stat. Sol. (a), 25, 691–695 (1974).ADSCrossRefGoogle Scholar
  46. 46.
    Ya. A. Kraftmakher and A. G. Cherevko, “Electrical resistivity and specific heat of the W-20 wt% Re alloy at high temperatures,” High Temp. – High Press., 7, 283–286 (1975).Google Scholar
  47. 47.
    M. P. Anisimov and A. G. Cherevko, Fluctuation Phenomena in Physicochemical Experiments [in Russian], Nauka, Novosibirsk (1986).Google Scholar
  48. 48.
    A. G. Cherevko, “Minimization of the effect of excess noise on the measurement of noise temperature,” Vestn. SibGUTI, No. 2, 58–61 (2008).Google Scholar
  49. 49.
    D. R. White and S. P. Benz, “Constraints on a synthetic-noise source for Johnson noise thermometry,” Metrologia, 45, 93–101 (2008).ADSCrossRefGoogle Scholar
  50. 50.
    Y. Kraftmakher, “Modulation calorimetry and related techniques,” Phys. Reports, 356, 1–117 (2002).ADSCrossRefGoogle Scholar
  51. 51.
    Y. Kraftmakher, “Pulse calorimetry with a light bulb,” Europ. J. Phys., 25, 707–715 (2004).CrossRefGoogle Scholar
  52. 52.
    A. M. Tremblay et al., “Microscopic calculation of nonlinear current fluctuations of a metallic resistor: The problem of heating in perturbation theory,” Phys. Rev. a, 19, No. 4, 1721–1740 (1979).MathSciNetADSCrossRefGoogle Scholar
  53. 53.
    G. K. White and M. L. Minges, “Thermophysical properties of some key solids: an update,” Int. J. Thermophys., 18, 1269–1327 (1997).ADSCrossRefGoogle Scholar
  54. 54.
    V. A. Vertogradskii and V. Ya. Cherkovskoi, “The electrical resistance of VR-20 tungsten-rhenium alloy at high temperatures,” Teplofiz. Vys. Temp., 9, No. 2, 438–440 (1971).Google Scholar
  55. 55.
    R. T. Andreeva et al., Metals and Alloys for Electrovacuum Devices [in Russian], Energiya, Moscow–Leningrad (1965).Google Scholar

Copyright information

© Springer Science+Business Media, Inc. 2012

Authors and Affiliations

  1. 1.Siberian State University of Telecommunications and InformaticsNovosibirskRussia

Personalised recommendations