Advertisement

Measurement Techniques

, Volume 54, Issue 3, pp 269–274 | Cite as

Nanoparticles in ambient air. measurement methods

  • O. V. Karpov
  • D. M. Balakhanov
  • E. V. Lesnikov
  • D. A. Dankin
  • V. B. Lapshin
  • A. A. Paliy
  • A. V. Syroeshkin
  • V. A. Zagaynov
  • I. E. Agranovskii
Nanometrology

Methods for the measurement of the parameters of aerosol particles with the use of an analyzer based on the differential mobility of nanoparticles and with a diffusion aerosol spectrometer are described and tested. A comparison of the results of measurements of the diameters of nanoparticles by the two methods is performed. Results of inter-laboratory comparisons of the analyzers based on the differential mobility of nanoparticles and studies of the electric motors of household appliances which are generators of the aerosols of nanoparticles with dimensions in the range 6–50 nm are presented.

Key words

nanoparticles aerosol disperse composition diffusion spectrometer differential mobility analyzer 

References

  1. 1.
    A. S. Ginzburg, D. P. Gubanova, and V. M. Minashkin, “Influence of natural and anthropogenic aerosols on global and regional climate,” Ross. Khim. Zh. (Zh. Ross. Khim. Obsh. im. D. I. Mendeleyeva), 52, No. 5, 112–119 (2008).Google Scholar
  2. 2.
    A. A. Lushnikov, V. A. Zagaynov, and Yu. S. Lyubovtseva, “Formation of aerosols in the atmosphere,” in: The Atmosphere and Ionosphere: Dynamics, Processes, and Monitoring. Physics of Earth and Space Environments, Springer, New York (2010), pp. 69–96.Google Scholar
  3. 3.
    V. A. Zagaynov et al., “Diurnal variations of the parameters of ambient aerosol in mountainous regions,” Izv. Akad. Nauk SSSR. Ser. FAO, 23, No. 12, 1323–1329 (1989).ADSGoogle Scholar
  4. 4.
    V. A. Zagaynov et al., “Background aerosol over Lake Baikal,” Dokl. Akad. Nauk SSSR, 308, No. 5, 1087–1090 (1989).Google Scholar
  5. 5.
    M. Coquery and J. P. Villeneuve, Final Report on the Split Sampling Exercises and Quality Assurance Activities, EU Project Number ENVRUS9602, ICWS, Amsterdam (2001).Google Scholar
  6. 6.
    V. B. Lapshin et al., “Modern methods of monitoring pollution of abiotic objects in marine environments,” Tr. GOIN, Iss. 210, 126–137 (2007).Google Scholar
  7. 7.
    Microbiological and Molecular-Genetic Evaluation of the Effect of Nanodimensional Materials on Members of a Microbiocenosis. Procedural Steps [in Russian], www.nanojournal.ru, accessed Sept. 10, 2010.
  8. 8.
    A. Ulyantsev et al., “Laser technologies for detection of nanoparticles in environmental media,” Chem. Eng. Trans., 22, 221–226 (2010).Google Scholar
  9. 9.
    O. S. Suzdaleva, T. V. Pleteneva, and A. V. Syroyeshkin, “Microscopic elements and the biological activity of a series of mineral waters,” Vest. OGU, Suppl. Bioelementologiya, No. 4 (29), 82–83 (2004).Google Scholar
  10. 10.
    A. V. Syroyeshkin et al., “Nanodimensional particles in natural waters,” in: Nanodimensional Particles in Natural and Technological Media. Methods and Means of Measurement: Tr. VNIIFTRI, Iss. 56 (148), 91–106 (2009).Google Scholar
  11. 11.
    ISO 15900:2009, Determination of Particle Size Distribition. Differential Electrical Mobility Analysis for Aerosol Particles. Google Scholar
  12. 12.
    A. A. Kirsh, A. V. Zagnitko, and P. V. Chechuev, “On the diffusion method of determining the size of submicron aerosol particles,” Zh. Fiz. Khim., 55, No. 12, 3034–3037 (1981).Google Scholar
  13. 13.
    P. A. Krasovskii et al., “Metrological support to parameter measurement for nanoparticles in technological media,” Izmer. Tekhn., No. 5, 8–15 (2009); Measur. Techn., 52, No. 5, 449–458 (2009).Google Scholar
  14. 14.
    A.Widensohler et al., “Investigation of the bipolar charge distribution at various gas conditions,” J. Aerosol. Soc., 17, 413–416 (1986).CrossRefGoogle Scholar
  15. 15.
    N. A. Fuks and A. G. Sutugin, Itogi Nauki. Physical Chemistry. Highly Dispersed Aerosol Particles, VINITI, Moscow (1969).Google Scholar
  16. 16.
    N. A. Fuks, I. B. Stechkina, and V. A. Staroselskii, “On finding the distribution of aerosol particles by size by means of the diffusion method,” Inzh.-Fiz. Zh., 5, No. 12, 100 (1962).Google Scholar
  17. 17.
    P. A. Krasovskii et al., “Metrological characteristics of a system of apparatus for measurement of the parameters of nanoparticles in natural and technological environments,” Izmer. Tekhn., No. 1, 3–8 (2010); Measur. Techn., 53 , No. 5, 2–9 (2010).Google Scholar
  18. 18.
    V. Zagaynov et al., “Comparison of the measurements made by diffusion aerosol spectrometer and differential mobility analyzer,” Proc. IAC 2010, Finland (2010), p. 166.Google Scholar
  19. 19.
    Y. Biryukov et al., “Low voltage aerosol spark generator,” ibid., p. 1246.Google Scholar
  20. 20.
    O. V. Karpov et al., “State secondary standard of units of disperse parameters of suspensions in the nanometric range,” Izmer. Tekhn., No. 2, 3–6 (2011).Google Scholar

Copyright information

© Springer Science+Business Media, Inc. 2011

Authors and Affiliations

  • O. V. Karpov
    • 1
  • D. M. Balakhanov
    • 1
  • E. V. Lesnikov
    • 1
  • D. A. Dankin
    • 1
  • V. B. Lapshin
    • 2
  • A. A. Paliy
    • 3
  • A. V. Syroeshkin
    • 3
  • V. A. Zagaynov
    • 4
  • I. E. Agranovskii
    • 4
  1. 1.All-Russia Research Institute of Physicotechnical and Radio Measurements (VNIIFTRI)MendeleyevoRussia
  2. 2.Lomonosov Moscow State UniversityMoscowRussia
  3. 3.Zubov State Oceanographic InstituteMoscowRussia
  4. 4.Karpov Research Institute of Physical ChemistryMoscowRussia

Personalised recommendations