Skip to main content
Log in

The development of a super-stable datum point for monitoring the energy scale of electron spectrometers in the energy range up to 20 keV

  • Ionizing Radiation Measurements
  • Published:
Measurement Techniques Aims and scope

An Erratum to this article was published on 12 August 2010

The long-term energy stability of the 7.5 keV and 17.8 keV conversion electrons of the 9.4 keV and 32 keV neutral transitions respectively in 83mKr, emitted by solid 83Rb/83mKr sources, prepared by evaporation in a vacuum, is investigated using two different spectrometers. The results obtained indicate the principal applicability of these 83Rb sources for monitoring the stability of the energy scale of electron spectrometers in the 20 keV region at the level of ±60 meV for at least two months, which corresponds to the requirement of the new KATRIN tritium neutrino project. Investigations are being continued using sources produced by implantation of 83Rb ions into different substrates.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. W. M. Yao et al., “Review of particle physics,” J. Phys. G: Nucl. Part. Phys., 33, Pt. 1 (2006), http://www.pdg.lbl.gov.

  2. Ch. Kraus et al., “Final result from phase II of the Mainz neutrino mass search in tritium β decay,” Phys. J., C40, 447 (2005).

    ADS  Google Scholar 

  3. V. M. Lobashev, “The search for the neutrino by a direct method in tritium beta-decay and the prospect of studying it in the KATRIN project,” Nucl. Phys., A719, 153 (2003).

    ADS  Google Scholar 

  4. J. Angrik et al., “KATRIN Design Report 2004,” Report NPE ASCR Rez EXP-01/2005 or FZKA Scientific Report 7090, Karlsruhe, http://www-ik.fzk.de/∼katrin/publications/index.html.

  5. J. Kašpar et al., “Effect of energy scale imperfection on results of neutrino mass measurements from β-decay,” Nucl. Instr. Meth. Phys. Res., A527, 423 (2004).

    ADS  Google Scholar 

  6. T. Thümmler et al., “Precision high voltage divider for the KATRIN experiment,” New. J. Phys., 11, 103007 (2009).

    Article  ADS  Google Scholar 

  7. R. G. H. Robertson et al., “Limit on νe mass from observation of the β decay of molecular tritium,” Phys. Rev. Lett., 67, 957 (1991).

    Article  ADS  Google Scholar 

  8. B. Ostrick, “Eine kondensierte 83mKr-Kalibrationsquelle für das KATRIN-experiment,” PhD Thesis, Münster Univ. (2008).

  9. D. Vénos et al., “Precise energy of the weak 32-keV gamma transition observed in 83mKr decay,” Nucl. Instr. Meth. Phys. Res., A560, 352 (2006).

    ADS  Google Scholar 

  10. A. Kovalík et al., “The K and LMX Auger spectra of krypton from the 83Rb decay,” J. Elec. Spec. Rel. Phen., 58, 49 (1992).

    Article  Google Scholar 

  11. A. Kovalík and V. M. Gorozhaukin, “A conversion-electron investigation of the 9.4 keV M1+E2 transition in 83Kr,” J. Phys. G: Nucl. Part. Phys., 19, 1921 (1993).

    Article  ADS  Google Scholar 

  12. A. Kovalík, “Neutrino masses in the sub-eV range,” Int. Workshop on Massive Neutrinos in Sub-eV Region, Bad Liebenzell, Germany, Jan. 18–21 (2001), http://www.ik.fzk.de/∼katrin/publication/index.html#liebenzell.

  13. K. Siegbahn et al., ESCA Applied to Free Molecules, North-Holland, Amsterdam–London (1969).

  14. K. Siegbahn et al., “ESCA atomic, molecular and solid state structure studied by means of electron spectroscopy,” Nova Acta Regiae Societatis Scientiarum Upsaliensis, Vol. 20 (1967).

  15. D. Bliggs and J. T. Grant (eds.), Surface Analysis by Auger and x-Ray Photoelectron Spectroscopy, IM Publ. and Surface Spectra, Ltd., Chichester (UK) (2003).

  16. D. A. Shirley et al., “Core-electron binding energies of the first thirty elements,” Phys. Rev., 15B, 544 (1977).

    ADS  Google Scholar 

  17. P. Weightman, “x-Ray excited Auger and photoelectron spectroscopy,” Rep. Prog. Phys., 45, 753 (1982).

    Article  ADS  Google Scholar 

  18. J. E. Houston, R. L. Park, and G. E. Laramore, “Direct comparison of core-electron binding energies of surface and bulk atoms of Ti, Cr, and Ni,” Phys. Rev. Lett., 30, 846 (1973).

    Article  ADS  Google Scholar 

  19. T. Mandel et al., “Core-level binding energies and Auger electron energies in epitaxial rare gas layers on graphite (001),” Surface Sci., 162, 453 (1985).

    Article  ADS  Google Scholar 

  20. G. Kaindl et al., “Distance-dependent relaxation shifts of photoemission and Auger energies for Xe on Pd(001),” Phys. Rev. Lett., 45, 1808 (1980).

    Article  ADS  Google Scholar 

  21. D. Varga et al., “Electrostatic spectrometer for measurement of internal conversion electrons in the 0.1–20 keV region,” Nucl. Instr. Meth., 192, 277 (1982).

    Article  Google Scholar 

  22. O. Dragoun, “An improved method for the measurement of the fine effects in electron spectra,” Nucl. Instr. Meth., A365, 385 (1995).

    ADS  Google Scholar 

  23. A. Picard et al., “A solenoid retarding spectrometer with high resolution and transmission for keV electrons,” Nucl. Instr. Meth. Phys. Res., B63, 345 (1992).

    Article  ADS  Google Scholar 

  24. A. Kovalík et al., “The KLL and KLX Auger electrons of arsenic from 75Se decay,” J. Electron Spectrosc. Relat. Phenom., 43, 225 (1987).

    Article  Google Scholar 

  25. D. Vénos et al., “83mKr radioactive source based on 83Rb trapped in cation-exchange paper or in zeolite,” Appl. Rad. Isot., 63, 323 (2005).

    Article  Google Scholar 

  26. R. B. Firestone et al., Table of Isotopes, Wiley, N. J. (1996), (1998) (update).

  27. D. Vénos et al., “Distribution of the 83Rb/83mKr activity on vacuum evaporated samples examined with the Timepix position sensitive detector,” Report NPI ASCR REZ, EXP-01/2007, http://www.arXiv.org/abs/0712.3860.

  28. N. Dragounová, “Precision high-voltage ac dividers and their calibration,” IEEE Trans. Instrum. and Measur., 54, 1911 (2005).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Kovalík.

Additional information

Translated from Izmeritel’naya Tekhnika, No. 3, pp. 41–46, March, 2010.

An erratum to this article can be found at http://dx.doi.org/10.1007/s11018-010-9545-3

Rights and permissions

Reprints and permissions

About this article

Cite this article

Vénos, D., Zbořil, M., Kašpar, J. et al. The development of a super-stable datum point for monitoring the energy scale of electron spectrometers in the energy range up to 20 keV. Meas Tech 53, 305–312 (2010). https://doi.org/10.1007/s11018-010-9501-2

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11018-010-9501-2

Key words

Navigation