Advertisement

Measurement Techniques

, 52:859 | Cite as

Modernized state primary standards of the units of thermal quantities

  • A. I. Pokhodun
  • T. A. Kompan
  • N. A. Sokolov
  • S. F. Gerasimov
  • M. S. Matveev
  • V. A. Nikonenko
  • A. S. Korenev
  • N. V. Churilina
Thermal Measurements

The content and results of efforts to modernize the three State Primary Standards of the units of temperature in the 0–3000°C range and also of the standards of thermal conductivity and coefficient of linear expansion of solids, stored at the Mendeleev Research Institute of Metrology, are described. It is shown that, simultaneously with the modernization of the standards, the systems of transmitting the dimensions of the units of the standards to working measuring instruments have also been improved.

Key words

standard temperature thermal conductivity coefficient of linear expansion comparison 

References

  1. 1.
    Echelle Internationale de Temperature de 1990 (EIT-90), BIPM, Paris (1990).Google Scholar
  2. 2.
    D. A. Tatarashvili, O. A. Sergeev, and Yu. A. Chistyakov, “The State Primary Standard of the unit of thermal conductivity of solids,” Izmer. Tekhn., No. 4, 18 (1975); Measur. Techn., 18, No. 4, 552 (1975).Google Scholar
  3. 3.
    N. A. Sokolov, Russian Patent No. 2276781 RF, “A method of determining the thermal conductivity of materials,” Izobr., Pol. Modeli, No. 13 (2006).Google Scholar
  4. 4.
    N. A. Sokolov, “A new class of instruments: multivalued measures of thermal conductivity,” Izmer. Tekhn., No. 4, 50 (2006); Measur. Techn., 49, No. 4, 386 (2006).Google Scholar
  5. 5.
    MI 2590-2006, GSI: Standard Materials.Google Scholar
  6. 6.
    A. N. Amatuni et al., “The State Primary Standard and checking scheme for instruments for measuring coefficients of linear expansion of solids in the 90–1800 K temperature range,” Izmer. Tekhn., No. 9, 34 (1986); Measur. Techn., 29, No. 9, 847 (1986).Google Scholar
  7. 7.
    T. A. Kompan, A. S. Korenev, and A. S. Lukin, “An automated dilatometer measuring system with multiparameter processing of the interference pattern,” Izmer. Tekhn., No. 6, 31 (2001); Measur. Techn., 44, No. 6, 601 (2001).Google Scholar
  8. 8.
    T. A. Kompan, A. S. Korenev, and A. S. Lukin, “Monitoring of the accuracy and ensuring the reliability of the results of phase-shift measurements in an interference dilatometer,” Izmer. Tekhn., No. 4, 18 (2007); Measur. Techn., 50, No. 4 (2007).Google Scholar
  9. 9.
    T. A. Kompan, “Metrological backup for measurements of the thermal expansion of materials. A brief analysis of developments in the last decade and future prospects for developments at the D. I. Mendeleev Institute of Metrology,” Glavnyi Metrolog, No. 4, 36 (2007).Google Scholar
  10. 10.
    State Standard GOST 8.018-2007, GSI: The State Checking Scheme for Instruments for Measuring the Thermal Coefficient of Linear Expansion of Solids in the 90 to 1800 K Temperature Range.Google Scholar

Copyright information

© Springer Science+Business Media, Inc. 2009

Authors and Affiliations

  • A. I. Pokhodun
    • 1
  • T. A. Kompan
    • 1
  • N. A. Sokolov
    • 1
  • S. F. Gerasimov
    • 1
  • M. S. Matveev
    • 1
  • V. A. Nikonenko
    • 2
  • A. S. Korenev
    • 1
  • N. V. Churilina
    • 1
  1. 1.Mendeleev All-Russia Research Institute of Metrology (VNIIM)St. PetersburgRussia
  2. 2.Etalon Scientific and Production EnterpriseOmskRussia

Personalised recommendations