Advertisement

Measurement Techniques

, Volume 52, Issue 3, pp 271–276 | Cite as

Simulation of deformations in the membranes of pressure transducers

  • E. M. Belozubov
  • V. A. Vasil’ev
  • P. S. Chernov
MECHANICAL MEASUREMENTS
  • 21 Downloads

Analytic and numerical simulation of deformations in flat membranes and membranes with hard center are considered. A simplified algorithm based on the bending equation of a beam is proposed. The equation may be used to calculate the tangential and radial deformations of different membranes by means of the method of finite differences.

Key words

simulation deformation flat membrane membrane with hard center 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    E. M. Belozubov, Izmer. Tekh., No. 5, 37 (2004); Measur. Tech., 47, No. 5, 474 (2004).Google Scholar
  2. 2.
    V. A. Vasil’ev, Prib. Sist.. Upravl., Kontr., Diagn., No. 4, 39 (2003).Google Scholar
  3. 3.
    E. M. Belozubov,V. A. Vasil’ev, and P. S. Chernov, Problems of Automation and Control in Technical Systems: Proc. Int. Sci. Techn. Conf., Izd-vo Penza State University, Penza (2007), p. 39.Google Scholar
  4. 4.
    L. E. Andreeva, Elastic Elements of Devices [in Russian], Mashinostroenie, Moscow (1981).Google Scholar
  5. 5.
    E. P. Osadchii (ed.), Design of Devices for the Measurement of Mechanical Quantities [in Russian], Mashinostroenie, Moscow (1979).Google Scholar
  6. 6.
    V. A. Tikhonenkov and A. I. Tikhonov, Theory, Calculation, and Foundation of the Design of Sensors of Mechanical Quantities. Textbook [in Russian], Ul’yanovsk State Technical University, Ul’yanovsk (2000).Google Scholar
  7. 7.
    V. A. Vasil’ev, Vest. Mosk. Gos. Tekh. Univ. Priborostroenie, No. 4, 97 (2002).Google Scholar
  8. 8.
    A. M. Turichin, Electrical Measurements of Nonelectrical Quantities [in Russian], Energiya, Moscow–Leningrad (1966).Google Scholar
  9. 9.
    V. Ya. Bakulin and A. A. Rassokha, The Method of Finite Elements and Holographic Interferometry in the Mechanics of Composite Materials [in Russian], Mashinostroenie, Moscow (1987).Google Scholar
  10. 10.
    E. M. Belozubov, V. A. Vasil’ev, and P. S. Chernov, Analytic and Numerical Methods for Simulation of Natural Scientific and Social Problems: Proc. 2nd Int. Sci. Tech. Conf., Izd-vo Penza State University, Penza (2007), p. 232.Google Scholar

Copyright information

© Springer Science+Business Media, Inc. 2009

Authors and Affiliations

  • E. M. Belozubov
    • 1
  • V. A. Vasil’ev
    • 1
  • P. S. Chernov
    • 1
  1. 1.Penza State UniversityPenzaRussia

Personalised recommendations