Measurement Techniques

, Volume 52, Issue 2, pp 117–124 | Cite as

Nonsmooth analysis in measurement processing

  • A. A. Kostoglotov
  • S. V. Lazarenko

It is shown that processing dynamic measurements is an inverse problem in relation to cause-effect consequences and belongs to the class of turning-point methods, while nonsmooth analysis provides the necessary conditions for a minimum in the error functional in the form of a combined maximum principle.

Key words

dynamic measurements measurement processing inverse treatment nonsmooth analysis 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Yu. E. Voskoboinikov, Stable Methods of Solving Inverse Measurement Tasks [in Russian], NGASU (Sibstrin), Novosibirsk (2007).Google Scholar
  2. 2.
    A. N. Tikhonov and V. Ya. Arsenin, Methods of Solving Ill-Posed Problems [in Russian], Nauka, Moscow (1986).Google Scholar
  3. 3.
    RMG 29-99, The State System of Measurements: Metrology: Basic Terms and Definitions [in Russian].Google Scholar
  4. 4.
    A. L. Shestakov, Izv. Vyssh. Ucheb. Zaved. SSSR, Priborostr., No. 4, 8 (1991).Google Scholar
  5. 5.
    A. A. Yablonskii and S. S. Noreiko, Textbook of Oscillation Theory [in Russian], Vysshaya Shkola, Moscow (1975).Google Scholar
  6. 6.
    V. Yu. Kneller, Datch. Sistemy, No. 12, 58 (2007).Google Scholar
  7. 7.
    A. A. Kolesnikov (ed.), Current Applied Control Theory: The Optimization Approach to Control Theory, Part I [in Russian], Izd. TRTU, Taganrog (2000).Google Scholar
  8. 8.
    V. M. Aleksandrov and A. A. Nesterov, Avtometr., No. 6, 105 (1967).Google Scholar
  9. 9.
    A. A. Krasovskii (ed.), Handbook on the Theory of Automatic Control [in Russian], Nauka, Moscow (1987).Google Scholar
  10. 10.
    N. N. Moiseev, Numerical Methods in the Theory of Optimal Systems [in Russian], Nauka, Moscow (1971).Google Scholar
  11. 11.
    A. A. Kostoglotov, A. I. Kostoglotov, and S. V. Lazarenko, Data-Acquisition and Control Systems, No. 12 [in Russian], (2007), p. 34.Google Scholar
  12. 12.
    A. M. Shubladze et al., Datch. Sistemy, No. 1, 20 (2008).Google Scholar
  13. 13.
    A. A. Kostoglotov, A. I. Kostoglotov, and S. V. Lazarenko, Avtomat. Vychisl. Tekhn., No. 5, 52 (2007).Google Scholar
  14. 14.
    A. I. Lurie, Analytical Mechanics [in Russian], Fizmatgiz, Moscow (1961).Google Scholar
  15. 15.
    V. F. Dem’yanov and L. V. Vasil’ev, Nondifferentiable Optimization [in Russian], Nauka, Moscow (1981).MATHGoogle Scholar
  16. 16.
    Yu. N. Koptev (general ed.), E. E. Bagdat’ev, A. V. Gorishin, and Ya. V. Malakov (eds.), Sensors for Thermophysical and Mechanical Parameters: Handbook in 3 Volumes, Vol. I (Book 1) [in Russian], IPRZhR, Moscow (1998).Google Scholar
  17. 17.
    N. G. Chetaev, Motion Stability: Papers on Analytical Mechanics [in Russian], Izd. AN SSSR, Moscow (1962).Google Scholar

Copyright information

© Springer Science+Business Media, Inc. 2009

Authors and Affiliations

  1. 1.Nedelin Rostov Military Rocket Troops InstituteRostov-on-DonRussia

Personalised recommendations