Skip to main content

Advertisement

Log in

Capabilities of a magnetic adiabatic calorimeter in measurement technology

  • Published:
Measurement Techniques Aims and scope

The design of a magnetic calorimeter for the measurement of releases of energy that correspond to a number of rare events, for example, cosmic particles, particles of dark matter, isolated x-ray quanta, and so on, is proposed. The calorimeter is set into a working state by means of the method of adiabatic demagnetization and the response to energy release is measured by a quantum interferometer (squid). The action of the calorimeter in different practical problems is considered, and the sensitivity of the device and its measurement precision are estimated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. Barone and J. Paterno, The Josephson Effect. Physics and Applications [Russian translation], Mir, Moscow (1984).

    Google Scholar 

  2. J. Clarke, Phys. Today, 39, No. 3, 36 (1986).

    Article  Google Scholar 

  3. R. F. Voss et al., Proc. Second Intern. Conf. Superconducting Quantum Devices, Berlin (May, 1980), p. 94.

  4. R. F. Voss et al., J. Appl. Phys., 51, 2306 (1980).

    Article  ADS  Google Scholar 

  5. M. B. Ketchen and F. Voss, Appl. Phys. Lett., 35, 812 (1979).

    Article  ADS  Google Scholar 

  6. J. Clarke, IEEE Trans. Electron. Dev., ED-27, 1896 (1980).

    Article  ADS  Google Scholar 

  7. M. B. Ketchen and J. M. Jaycox, Appl. Phys. Lett., 40, 736 (1982).

    Article  ADS  Google Scholar 

  8. J. M. Pierce, J. E. Opfer, and L. H. Rorden, IEEE Trans. Magn., MAG-10, 599 (1974).

    Article  ADS  Google Scholar 

  9. P. Falferi, Class. Quantum Grav., 21, S973 (2004).

    Article  ADS  Google Scholar 

  10. L. Gottardi et al., Class. Quantum Grav., 21, S1191 (2004).

    Article  ADS  Google Scholar 

  11. M. Buhler and E. Umlauf, J. Low Temp. Phys., 93, 697 (1993).

    Article  Google Scholar 

  12. T. Fausch, M. Buhler, and E. Umlauf, J. Low Temp. Phys., 93, 703 (1993).

    Article  Google Scholar 

  13. R. Bandler et al., J. Low Temp. Phys., 93, 709 (1993).

    Article  Google Scholar 

  14. O. V. Lounasmaa, Experimental Principles and Methods Below 1 K, Academic Press, London-New York (1974).

    Google Scholar 

  15. B. B. Schwartz and S. Foner (eds.), Superconductor Applications: Squids and Machines, Plenum Press, New York (1974).

    Google Scholar 

  16. L. D. Landau and E. M. Lifshits, Theoretical Physics. Vol. 5. Statistical Physics [in Russian], Fiz.-Mat. Lit., Moscow (1976).

    Google Scholar 

  17. R. P. Feynman, Statistical Mechanics, Addison-Wesley (1990).

  18. M. J. Steenland, Thesis, Leiden (1952), p. 10.

  19. M. J. Steenland, D. de Klerk, and C. J. Gorter, Leiden Commun. 284b; Physica, 15, 711 (1949).

    Google Scholar 

  20. A. I. Golovashkin et al., Kratkie Soobsh. Fizike, FIAN, Moscow, No. 10, 35 (2007).

    Google Scholar 

  21. E. R. Mueller and J. Walkman, www.aip.org/tip.INPHFA/vol-9/iss-4/p27.html.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. I. Golovashkin.

Additional information

Translated from Izmeritel'naya Tekhnika, No. 11, pp. 24–30, November, 2008.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Golovashkin, A.I., Zherikhina, L.N., Kuleshova, G.V. et al. Capabilities of a magnetic adiabatic calorimeter in measurement technology. Meas Tech 51, 1178–1187 (2008). https://doi.org/10.1007/s11018-009-9183-9

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11018-009-9183-9

Key words

Navigation