Measurement Techniques

, Volume 51, Issue 11, pp 1178–1187 | Cite as

Capabilities of a magnetic adiabatic calorimeter in measurement technology

  • A. I. Golovashkin
  • L. N. Zherikhina
  • G. V. Kuleshova
  • A. M. Tskhovrebov
  • G. N. Izmailov

The design of a magnetic calorimeter for the measurement of releases of energy that correspond to a number of rare events, for example, cosmic particles, particles of dark matter, isolated x-ray quanta, and so on, is proposed. The calorimeter is set into a working state by means of the method of adiabatic demagnetization and the response to energy release is measured by a quantum interferometer (squid). The action of the calorimeter in different practical problems is considered, and the sensitivity of the device and its measurement precision are estimated.

Key words

calorimeter paramagnetic substance adiabatic demagnetization squid precise measurements 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    A. Barone and J. Paterno, The Josephson Effect. Physics and Applications [Russian translation], Mir, Moscow (1984).Google Scholar
  2. 2.
    J. Clarke, Phys. Today, 39, No. 3, 36 (1986).CrossRefGoogle Scholar
  3. 3.
    R. F. Voss et al., Proc. Second Intern. Conf. Superconducting Quantum Devices, Berlin (May, 1980), p. 94.Google Scholar
  4. 4.
    R. F. Voss et al., J. Appl. Phys., 51, 2306 (1980).CrossRefADSGoogle Scholar
  5. 5.
    M. B. Ketchen and F. Voss, Appl. Phys. Lett., 35, 812 (1979).CrossRefADSGoogle Scholar
  6. 6.
    J. Clarke, IEEE Trans. Electron. Dev., ED-27, 1896 (1980).CrossRefADSGoogle Scholar
  7. 7.
    M. B. Ketchen and J. M. Jaycox, Appl. Phys. Lett., 40, 736 (1982).CrossRefADSGoogle Scholar
  8. 8.
    J. M. Pierce, J. E. Opfer, and L. H. Rorden, IEEE Trans. Magn., MAG-10, 599 (1974).CrossRefADSGoogle Scholar
  9. 9.
    P. Falferi, Class. Quantum Grav., 21, S973 (2004).CrossRefADSGoogle Scholar
  10. 10.
    L. Gottardi et al., Class. Quantum Grav., 21, S1191 (2004).CrossRefADSGoogle Scholar
  11. 11.
    M. Buhler and E. Umlauf, J. Low Temp. Phys., 93, 697 (1993).CrossRefGoogle Scholar
  12. 12.
    T. Fausch, M. Buhler, and E. Umlauf, J. Low Temp. Phys., 93, 703 (1993).CrossRefGoogle Scholar
  13. 13.
    R. Bandler et al., J. Low Temp. Phys., 93, 709 (1993).CrossRefGoogle Scholar
  14. 14.
    O. V. Lounasmaa, Experimental Principles and Methods Below 1 K, Academic Press, London-New York (1974).Google Scholar
  15. 15.
    B. B. Schwartz and S. Foner (eds.), Superconductor Applications: Squids and Machines, Plenum Press, New York (1974).Google Scholar
  16. 16.
    L. D. Landau and E. M. Lifshits, Theoretical Physics. Vol. 5. Statistical Physics [in Russian], Fiz.-Mat. Lit., Moscow (1976).Google Scholar
  17. 17.
    R. P. Feynman, Statistical Mechanics, Addison-Wesley (1990).Google Scholar
  18. 18.
    M. J. Steenland, Thesis, Leiden (1952), p. 10.Google Scholar
  19. 19.
    M. J. Steenland, D. de Klerk, and C. J. Gorter, Leiden Commun. 284b; Physica, 15, 711 (1949).Google Scholar
  20. 20.
    A. I. Golovashkin et al., Kratkie Soobsh. Fizike, FIAN, Moscow, No. 10, 35 (2007).Google Scholar
  21. 21.
    E. R. Mueller and J. Walkman,

Copyright information

© Springer Science+Business Media, Inc. 2008

Authors and Affiliations

  • A. I. Golovashkin
    • 1
  • L. N. Zherikhina
    • 1
  • G. V. Kuleshova
    • 1
  • A. M. Tskhovrebov
    • 1
  • G. N. Izmailov
    • 2
  1. 1.Lebedev Physics InstituteRussian Academy of SciencesMoscowRussia
  2. 2.Moscow Aviation Institute (State University of Aerospace Technologies)MoscowRussia

Personalised recommendations