Measurement Techniques

, Volume 51, Issue 7, pp 755–761 | Cite as

A generalized equation for the saturation vapor pressure of individual substances

  • M. S. Rozhnov
  • D. N. Mel’nik
  • P. A. Chmykhalo
Mechanical Measurements


A generalized equation for calculating the saturation vapor pressure of individual substances at temperatures from the triple to the critical point is derived. The error of the calculation is close to the error of experimental data.

Key words

saturation vapor pressure equation calculation 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    W. Wagner and A. Pruss, Phys. Chem. Ref. Data, 31, No. 2, 387 (2002).ADSCrossRefGoogle Scholar
  2. 2.
    R. Span et al., Phys. Chem. Ref. Data, 29, No. 6, 1361 (2002).ADSCrossRefGoogle Scholar
  3. 3.
    A. Ya. Kolomiets, Thermal Properties of Hydrocarbons and Petroleum Products, Collected Papers [in Russian], TsNIITENEFTEKhIM, Moscow (1983).Google Scholar
  4. 4.
    D. Himmelblau, Applied Nonlinear Programming [Russian translation], Mir, Moscow (1975).MATHGoogle Scholar
  5. 5.
    R. Reid, J. Prausnitz, and T. Sherwood, Properties of Gases and Liquids [Russian translation], Khimiya, Leningrad (1982).Google Scholar
  6. 6.
    E. W. Lemmon, M. O. McLinden, and D. G. Friend, NIST Chemistry Webbook, NIST Standard Reference Database Number 69, edited by P. J. Linstrom and W. G. Mallard, NIST, Gaithersburg, MD 20899 (2005).Google Scholar
  7. 7.
    TRC Databases for Chemistry and Engineering, TRC Product Version 1996-4, Texas A and M University System: College Station, Nov. 1996, TX 77843-3111.Google Scholar
  8. 8.
    N. B. Vargaftik, Handbook of the Thermal Properties of Gases and Liquids [in Russian], Nauka, Moscow (1972).Google Scholar
  9. 9.
    DSSDD 7-2005, A method of Calculating the Saturation Vapor Pressure of n-Alkanes (C 1–C50) and Water at the Boiling Point [in Ukrainian], UkrNDNTs, Kiev (2006).Google Scholar
  10. 10.
    W. Lemmon and A. R. H. Goodwin, J. Phys. Chem. Ref. Data, 29, No. 1, 1 (2000).ADSCrossRefGoogle Scholar
  11. 11.
    GSSSD208-04, Refrigerant R143a: Thermodynamic Properties on the Boiling and Condensation Lines in the 161.34–345.815 K Temperature Range.Google Scholar
  12. 12.
    B. A. Younglove and J. F. Ely, J. Phys. Chem. Ref. Data 16, No. 4, 577 (1987).ADSCrossRefGoogle Scholar
  13. 13.
    D. Ambrose and N. B. Ghiassee, J. Chem. Thermodynamics, 19, No. 9, 903 (1987).CrossRefGoogle Scholar
  14. 14.
    M. B. Ewing and A. R. H. Goodwin, J. Chem. Thermodynamics, 23, 1163 (1991).CrossRefGoogle Scholar
  15. 15.
    GSSSD 126-89, Toluene: The Thermodynamic Properties of the Liquid Phase in the Saturated State in the 178–520 K Temperature Range.Google Scholar
  16. 16.
    D. Hanson and K. Mauersberger, J. Chem. Phys., 83, No. 1, 326 (1985).ADSCrossRefGoogle Scholar
  17. 17.
    H. K. Russel, D. R. Golding, and D. M. Yost, J. Chem. Soc., 66, 10 (1944).Google Scholar
  18. 18.
    W. H. Mears et al., Ind. Eng. Chem., 47, 1499 (1955).CrossRefGoogle Scholar
  19. 19.
    Study on Physical and Chemical Properties of Fluoroorganic Compounds and Their Mixtures [in Russian], Scientific and Technical Report, Technol. Inst. Kholod. Promst., Odessa (1988).Google Scholar
  20. 20.
    D. Arnaud et al., Proc. 18th Intern. Congr. of Refriger., Montreal, Canada (1991).Google Scholar

Copyright information

© Springer Science+Business Media, Inc. 2008

Authors and Affiliations

  • M. S. Rozhnov
    • 1
  • D. N. Mel’nik
    • 1
  • P. A. Chmykhalo
    • 1
  1. 1.All-Ukraine State Scientific-Industrial Center of Standardization, Metrology, Certification, and Consumer Rights Protection (Ukrmetrteststandart)KyivUkraine

Personalised recommendations