Advertisement

Measurement Techniques

, Volume 50, Issue 10, pp 1081–1086 | Cite as

The principles of information processing based on the numerical solution of the nonlinear heat-conduction problem. Pt. 1. The three-dimensional discrete mathematical model

  • I. N. Ishchuk
Thermal Measurements
  • 16 Downloads

Abstract

A three-dimensional solution of the direct problem of heat conduction when a linear pulsed heat source acts in the plane of contact of two semibounded bodies is presented. The solution is obtained by the method of finite differences. An example of the modeling is considered.

Key words

thermal properties variational calculus finite difference mathematical modeling 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    L. A. Kozdoba, Computational Thermal Physics [in Russian], Naukova Dumka, Kiev (1992).Google Scholar
  2. 2.
    O. M. Alifanov, Identification of Aircraft Heat Exchange Processes [in Russian], Mashinostroenie, Moscow (1979).Google Scholar
  3. 3.
    E. M. Kartashov, Analytical Methods in the Theory of the Heat Conduction of Solids [in Russian], Vysshaya Shkola, Moscow (2001).Google Scholar
  4. 4.
    I. N. Ishchuk and A. I. Fesenko, Izmer. Tekh., No. 7, 44 (2005); Measurement Techniques, 48 (7), 693 (2005).Google Scholar
  5. 5.
    E. S. Platunov et al., Thermal Measurements and Instruments [in Russian], Mashinostroenie, Leningrad (1986).Google Scholar
  6. 6.
    S. V. Mishchenko et al., Analysis and Synthesis of Measurement Systems [in Russian], IPTs Tambov State Technical University, Tambov (1995).Google Scholar
  7. 7.
    A. I. Fesenko, Digital Devices for Determining the Thermal Properties of Materials [in Russian], Mashinostroenie, Moscow (1981).Google Scholar
  8. 8.
    B. I. Gerasimov and E. I. Glinkin, Microprocessors in Instrument Construction: A Practical Applications Handbook [in Russian], Mashinostroenie, Moscow (2000).Google Scholar
  9. 9.
    A. A. Samarskii and P. N. Vabishchevich, Numerical Methods of Solving Inverse Problems of Mathematical Physics [in Russian], Editorial URSS, Moscow (2004).Google Scholar
  10. 10.
    A. A. Samarskii and P. N. Vabishchevich, Computational Heat Transfer [in Russian], Editorial URSS, Moscow (2003).Google Scholar
  11. 11.
    A. G. Shashkov, V. A. Bubnov, and S. Yu. Yanovskii, Wave Phenomena of Heat Conduction. A Systems-Structural Approach [in Russian], Editorial URSS, Moscow (2004).Google Scholar
  12. 12.
    A. A. Samarskii, Introduction to Numerical Methods [in Russian], Nauka, Moscow (1987).Google Scholar

Copyright information

© Springer Science+Business Media, Inc. 2007

Authors and Affiliations

  1. 1.Tambov Military Aircraft Engineering High School of Radioelectronics (Military Institute)Russia

Personalised recommendations