Measurement Techniques

, Volume 50, Issue 2, pp 101–107 | Cite as

Representing measured quantities and measurement errors as fuzzy variables

  • G. N. Solopchenko
General Problems of Metrology and Measurement Technique


In order to describe measured quantities and measurement errors as fuzzy variables, two forms are considered of simplified assignment functions in the form of trapezia with rectilinear and curvilinear sides. The expressions for the systematic and random error components then correspond to the existing standardization documentation. The mathematical processing programs for measurements operate with rules for acting with fuzzy variables and have potential capacity for providing their own metrological documentation. Comparative numerical examples are given.

Key words

measured quantities errors fuzzy variables 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    L. Gonella, Alta Frequenza, XLIV, No. 10 (1975).Google Scholar
  2. 2.
    J. L. Destouches and P. Fevrier, IMEKO Coll., Budapest (1980), p. 37.Google Scholar
  3. 3.
    M. Luca, Digest of the 12 Triennial World Congress IMEKO, Vol. III, Beijing, China (1991), p. 83.Google Scholar
  4. 4.
    L. K. Reznik, W. C. Jonson, and G. N. Solopchenko, Proc. NASA Conf. NAFIPS’94, San Antonio, Texas (1994), p. 14.Google Scholar
  5. 5.
    B. V. Dasarathy, Proc. IEEE Intern. Conf. Industr. Technol., Vol. 2, 5 (2000).Google Scholar
  6. 6.
    L. K. Reznik and G. N. Solopchenko, Izmer., Kontr., Avtomat., No. 1, 3 (1984).Google Scholar
  7. 7.
    A. N. Borisov et al., Processing Fuzzy Information in Decision Systems [in Russian], Radio i Svyaz’, Moscow (1989).MATHGoogle Scholar
  8. 8.
    T. Nguen Hung and V. Kreinovich, Application of Interval Computation, R. B. Kearfott and V. Kreinovich (eds.), Kluwer Academic Publishers, Dordrecht, Boston, and London (1996), p. 245.Google Scholar
  9. 9.
    G. N. Solopchenko, Vestnik of the North-Western Division of the Metrological Academy, Issue 1 [in Russian] (1993), p. 50.Google Scholar
  10. 10.
    GOST 8.009-84, The State of Measurements: Standardized Metrological Characteristics of Means of Measurement [in Russian].Google Scholar
  11. 11.
    S. M. Chen, J. Cybernetics and Systems, 27, 449 (1996).MATHCrossRefGoogle Scholar
  12. 12.
    H. S. Lee, Fuzzy Sets and Systems, 132, 303 (2002).MATHCrossRefMathSciNetGoogle Scholar
  13. 13.
    M. J. Schutte and E. E. Swartzlander, Applications of Interval Computation, R. B. Kearfort and V. Kreinovich (eds.), Kluwer Academic Publishers, Dordrecht, Boston, and London (1996), p. 381.Google Scholar
  14. 14.
    M. A. Zemel’man, A. P. Knyupfer, and V. P. Kuznetsov, Izmer. Tekh., No. 2, 70 (1969).Google Scholar
  15. 15.
    T. Nguen Hung et al., Soft Computing in Measurement and Information Acquisition, L. Reznik and V. Kreinovich (eds.), Springer Verlag, Berlin and Heidelberg (2003), p. 10.Google Scholar
  16. 16.
    P. V. Novitskii, Metrologiya, No. 2, 4 (1979).Google Scholar
  17. 17.
    Yu. G. Kostyleva, I. P. Mysev, and N. V. Tsoi, Izmer. Tekh., No. 5, 13 (2006).Google Scholar
  18. 18.
    GOST 8.207-76, The State of Measurements: Direct Measurements with Repeated Observations. Methods of Processing the Observational Results. Basic Concepts [in Russian].Google Scholar
  19. 19.
    MI 1317-86: Statements of Method: The State System of Measurements: Measurement Results and Error Characteristics: Modes of Use in Testing Product Specimens and Parameter Monitoring [in Russian].Google Scholar
  20. 20.
    GOST 8.401-80, The State System of Measurements: Accuracy Classes of Measurement Facilities: General Specifications [in Russian].Google Scholar

Copyright information

© Springer Science+Business Media, Inc. 2007

Authors and Affiliations

  • G. N. Solopchenko
    • 1
  1. 1.St. Petersburg State Polytechnical UniversityRussia

Personalised recommendations