Advertisement

Measurement Techniques

, Volume 49, Issue 8, pp 755–761 | Cite as

Applying the Abbé test to the independence of measurement series with distributions deviating from normal

  • V. I. Strunov
Article

Abstract

Monte Carlo simulation has been used to demonstrate correctness in using the parametric Abbé test in metrological practice for checking the hypothesis of independence for the realization of some forms of nongaussian random processes.

Key words

random process time series independence hypothesis probability distribution nonparametric tests parametric Abbé test Monte Carlo simulation 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    GOST 8.207-76, The State System of Measurements: Direct Measurements with Repeated Observations: Methods of Processing the Observational Results: Basic Concepts [in Russian].Google Scholar
  2. 2.
    V. I. Strunov, Development of the Statistical Virtual Standard Method For Estimating the Metrological Characteristics of Standard Measuring Instruments, MSc Thesis [in Russian], Minsk (1998).Google Scholar
  3. 3.
    V. I. Strunov and A. V. Strunov, Metrolog. Priborostr., No. 3, 22 (2004).Google Scholar
  4. 4.
    J. Bendat and A. Pirsol, Applied Analysis of Random Data [Russian translation], Mir, Moscow (1989).Google Scholar
  5. 5.
    S. A. Aivazyan and V. S. Mkhitaryan, Applied Statistics and the Principles of Econometrics: College Textbook [in Russian], YuNITI, Moscow (1998).Google Scholar
  6. 6.
    GOST R ISO 5479-2002, Statistical Methods: Checking Deviations of a Probability Distribution from a Normal One [in Russian].Google Scholar
  7. 7.
    GOST R 50.1.033-2001, Standardization Recommendations: Applied Statistics: Rules for Checking Conformity of an Experimental Distribution with a Theoretical One. Part 1. Tests of χ 2 Type [in Russian].Google Scholar
  8. 8.
    R 50.1.037-2002, Standardization Recommendations: Applied Statistics: Rules for Checking Conformity of an Experimental Distribution with a Theoretical One. Part 2. Nonparametric Tests [in Russian].Google Scholar
  9. 9.
    P. V. Novitskii and I. A. Zograf, Estimating the Errors of Measurement Results [in Russian], Énergoatomizdat, Leningrad (1991).Google Scholar
  10. 10.
    L. N. Bol’shev and N. V. Smirnov, Tables for Mathematical Statistics [in Russian], Nauka, Moscow (1983).Google Scholar
  11. 11.
    S. A. Labutin and M. V. Pugin, Izmer. Tekh., No. 8, 9 (1998).Google Scholar

Copyright information

© Springer Science+Business Media, Inc. 2006

Authors and Affiliations

  • V. I. Strunov
    • 1
  1. 1.Belarus-Russia AYaKS Scientific Production CompanyRussia

Personalised recommendations