Advertisement

Measurement Techniques

, Volume 48, Issue 8, pp 760–767 | Cite as

Simulating Gravitational Antennas of Weber Type Using LC Circuits

  • G. N. Izmailov
Article
  • 28 Downloads

Abstract

The paper discusses the scope for simulating a Weber gravitational antenna by means of a superconducting LC circuit. A solution is given to the oscillation equation and an estimate is made of the noise. A study is made of the scope for direct use of such a circuit to record gravitational waves. A three-dimensional structure is proposed consisting of superconducting LC circuits whose sensitivity is higher than that of a scheme with one circuit and which has a different direction pattern.

Key words

resonant antenna gravitation superconducting LC tuned circuit sensitivity noise 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

REFERENCES

  1. 1.
    M. Coles, “Sources and detectors,” Proc. Int. Conf. on Gravitational Waves, I. Cuifolini and F. Fedecaro (eds.), World Scientific, Singapore (1997), p. 74.Google Scholar
  2. 2.
    A. Giazotto, ibid., p. 166.Google Scholar
  3. 3.
    K. Danzmann, ibid., p. 256.Google Scholar
  4. 4.
    S. Kawamura and N. Mio, Proc. 2nd TAMA Intern. Workshop on Gravitational Wave Detection, Univ. Academ., Tokyo (1999).Google Scholar
  5. 5.
    http://www.anu.edu.au/ACIGAGoogle Scholar
  6. 6.
    http://lisa.jpl.nasa.gov/documents/ppa.2.09.pdfGoogle Scholar
  7. 7.
    http://sam.phys.lsu.eduGoogle Scholar
  8. 8.
    http://www.1nl.infn.itGoogle Scholar
  9. 9.
    http://www.roma.infn.it/rog/explorer/explorer.htmlGoogle Scholar
  10. 10.
    http://www.1nf.infn.it/esperimenty/rog/NAUTILUSGoogle Scholar
  11. 11.
    http://www.gravity.pd.uwa.edu.au/publ/niobe.htmlGoogle Scholar
  12. 12.
    A. de Waard et al., “Class. Quant. Grav.,” Proc. 5th E. Amaldi Conf. on Gravitational Waves, 21, No.5, S1027 (2004).Google Scholar
  13. 13.
    B. Mours and M. Yvert, Phys. Lett. A, 136, No.4, 5, 209 (1989).CrossRefGoogle Scholar
  14. 14.
    P. Fortini, Annals Phys., 248, 34 (1996).CrossRefADSMATHGoogle Scholar
  15. 15.
    G. N. Izmailov, Izv. VUZ, No. 6, 106 (2000); P. Fortini and G. N. Izmailov, e-print: gr-qc/9909092 (1999).Google Scholar
  16. 16.
    L. P. Grishchuk, e-print: gr-qc/0305051 (2003).Google Scholar
  17. 17.
    I. E. Tamm, The Principles of Electricity Theory [in Russian], Nauka, Moscow (1966).Google Scholar
  18. 18.
    T. Van Duzer and C. W. Turner, Physical Principles of Superconducting Devices and Circuits [Russian translation], Radio i Svyaz', Moscow (1984).Google Scholar
  19. 19.
    A. Nyfe, Introduction to Perturbation Methods [Russian translation], Mir, Moscow (1984).Google Scholar
  20. 20.
    M. B. Ketchen and F. Voss, Appl. Phys. Lett., 35, 812 (1979).CrossRefADSGoogle Scholar
  21. 21.
    M. Bonaldi et al., Class. Quant. Grav., 21, No.5, S1155 (2004).ADSGoogle Scholar
  22. 22.
    R. Chiao, e-print gr-qc 0204012 (2002).Google Scholar

Copyright information

© Springer Science+Business Media, Inc. 2005

Authors and Affiliations

  • G. N. Izmailov

There are no affiliations available

Personalised recommendations