Study of Conditions for Improving Chemical and Structural Homogeneity of Ferritic Class Hot-Rolled Steels

Redistribution of carbon and other elements, and formation of the structure, composition, and properties of low-carbon Nb, Nb–Ti, Nb–V, Nb–V–Mo and Ti–Mo microalloyed steels during hot rolling is studied using metal of five laboratory melts. It is established that by selecting the temperature for the beginning of rolling in the finishing group of stands according to steel composition (microalloying system) it is possible to achieve a significant improvement in the homogeneity of the composition, structure, and set of rolled product properties. Therefore, it is demonstrated by experiment that chemical and structural heterogeneity of metal formed in the billet casting stage may be largely eliminated during hot rolling on the basis of controlling carbide (carbonitride) precipitate formation.

This is a preview of subscription content, access via your institution.

Fig. 1.
Fig. 2.

References

  1. 1.

    A. I. Zaitsev, “Prospective directions for development of metallurgy and materials science of steel,” Pure and Applied Chemistry, 89, No. 10, 1553–1565 (2017).

    CAS  Article  Google Scholar 

  2. 2.

    C. Lesch, N. Kwiaton, and F. B. Klose, “Advanced high strength steels (AHSS) for automotive applications — tailored properties by smart microstructural adjustments,” Steel Research Int., 88, 1700210 (2017).

    Article  Google Scholar 

  3. 3.

    N. Fonstein, Advanced High Strength Sheet Steels, Springer Int. Publishing, Switzerland (2015).

    Book  Google Scholar 

  4. 4.

    Y. Funakawa, T. Shiozaki, K. Tomita, T. Yamamoto, and E. Maeda, “Development of high strength hot-rolled sheet steel consisting of ferrite and nanometer-sized carbides,” ISIJ Int., 44, 1945–1951 (2004).

    CAS  Article  Google Scholar 

  5. 5.

    K. Seto, Y. Funakawa, and S. Kaneko, “Hot rolling high strength steels for suspension and chassis parts “NANOHITEN” and “BTH steels” JFE Technical Report, No. 10, 19–25 (2007).

  6. 6.

    X. Mao, X. Huo, X. Sun, and Y. Chai, “Strengthening mechanisms of a new 700 MPa hot rolled Ti-microalloyed steel produced by compact strip production,” J. of Mater. Proc. Techn., 210, 1660–1666 (2010).

    CAS  Article  Google Scholar 

  7. 7.

    A. V. Koldaev, A. I. Zaitsev, I. A. Krasnyanskaya, and D. L. D’yakonov, “Study of the effect of composition and thermal deformation treatment parameters on the properties of austenitic steels microalloyed with titanium and molybdenum. Part 2. Phase precipitate characteristics,” Metallurg, No. 6, 60–70 (2019).

    Google Scholar 

  8. 8.

    A. V. Koldaev, A. I. Zaitsev, I. A. Krasnyanskaya, and D. L. D’yakonov, “Study of the effect of composition and thermal deformation treatment parameters on the properties of austenitic steels microalloyed with titanium and molybdenum. Part 1. Microstructure characteristics,” Metallurg, No. 5, 55–61 (2019).

    Google Scholar 

  9. 9.

    Y. Funakawa and K. Seto, “Coarsening behavior of nanometer sized carbides in hot-rolled high strength sheet steel,” Mater. Sci. Forum, 539–543, 4813–4818 (2007).

    Article  Google Scholar 

  10. 10.

    Z. Jia, R. D. K. Misra, R. O’Malley, and S. J. Jansto, “Fine-scale precipitation and mechanical properties of thin slab processed titanium–niobium bearing high strength steels,” Mater. Sci. and Eng. A, 528, No. 22, 7077–7083.

  11. 11.

    F. Z. Bu, X. M. Wang, S. W. Yang, C. J. Shang, and R. D. K. Misra, “Contribution of interphase precipitation on yield strength in thermomechanically simulated Ti–Nb and Ti–Nb–Mo microalloyed steels,” Mater. Sci. and Eng. A, 620, 22–29 (2014).

    CAS  Article  Google Scholar 

  12. 12.

    C. Y. Chen, H. W. Yen, F. H. Kao, W. C. Li, C. Y. Huang, J. R. Yang, and S. H. Wang, “Precipitation hardening of high-strength low-alloy steels by nanometer-sized carbides,” Mater. Sci. and Eng. A, 499, 162–166 (2009).

    Article  Google Scholar 

  13. 13.

    A. I. Zaitsev, A. V. Koldaev, N. A. Arutyunyan, B. M. Mogutnov, and S. F. Dunaev, “New generation of economically alloyed ferritic steels with a unique set of properties that are difficult to combine,” Probl. Chern. Met. Mater., No. 2, 77–86 (2019).

    Google Scholar 

  14. 14.

    K. Frisk and U. Borggren, “Precipitation in microalloyed steel by model alloy experiment and thermodynamic calculation,” Metall. and Mater. Trans A, 48A, 4806–4817 (2016).

    Article  Google Scholar 

  15. 15.

    G. Larzabal, N. Isasti, J. M. Rodriguez-Ibabe, and P. Uranga, “Evaluating strengthening and impact toughness mechanisms for ferritic and bainitic microstructures in Nb, Nb–Mo and Ti–Mo microalloyed steels,” Metals, 7, 65 (2017).

    Article  Google Scholar 

  16. 16.

    N. Kamikawa, K. Sato, G. Miyamoto, M. Murayama, N. Sekido, K. Tsuzakie, and T. Furuhara, “Stress–strain behavior of ferrite and bainite with nano-precipitation in low carbon steels,” Acta Materialia, 83, 383–396 (2015).

    CAS  Article  Google Scholar 

  17. 17.

    X. Deng, T. Fu, Z. Wang, G. Liu, G. Wang, and R. D. K. Misra, “Extending the boundaries of mechanical properties of Ti–Nb low carbon steel via combination of ultrafast cooling and deformation during austenite-to-ferrite transformation,” Met. Mater. Int., 23, No. 1, 175–183 (2017).

    CAS  Article  Google Scholar 

  18. 18.

    A. Rijkenberg, A. Blowey, P. Bellina, and C. Wooffindin, “Advanced high stretch-flange formability steels for chassis & suspension applications,” SCT2014 (4th Int. Conf. on Steels in Cars and Trucks), 15–19 June 2014, Braunschweig, Germany.

  19. 19.

    A. I., Zaitsev, A. V. Koldaev, N. A. Karamysheva, and I. G. Rodionova, “Mechanisms for improving chemical and structural homogeneity of hot-rolled product for objects prepared by hot stamping,” Metallurgist, 59, No. 11, 1086–1095 (2016).

    CAS  Article  Google Scholar 

  20. 20.

    A. I. Zaitsev, K. L. Kosyrev, and I. G. Rodionova, “Contemporary trends in the development of metallurgical technology for achieving a good set of steel service properties and quality indices,” Probl. Chern. Met. Mater., No. 3, 5–13 (2012).

    Google Scholar 

  21. 21.

    A. I. Zaitsev, N. G. Shaposhnikov, I. G. Rodionova, and A. A. Pavlov, “Thermodynamic development of austenite-martensite class corrosion-resistant steels intended for a bimetal cladding layer,” Metallurgist, 59, 1195–1120 (2015).

    Google Scholar 

  22. 22.

    N. G. Shaposhnikov, B. M. Mogutnov, S. M. Polonskaya, A. P. Kolesnichenko, and P. B. Belyavskii, “Thermodynamic modeling as a tool for improving heating technology for ingots of steels 12Kh18N10T for rolling,” Materialoved., No. 11, 2–9 (2004).

    Google Scholar 

  23. 23.

    A. I. Zaitsev, I. G. Rodionova, N. G. Shaposhnikov, B. M. Mogutnov, S. F. Dunaev, P. A. Mishnev, and R. R. Adigamov, “Development f scientific bases for effective production technology of cold-rolled high-strength low-alloy steel by controlling the type, amount, and morphology of nonmetallic excess phase precipitates,” Probl. Chern. Met Materialovedeniya, No. 1, 75–85 (2012).

    Google Scholar 

  24. 24.

    N. G. Shaposhnikov, A. V. Koldaev, A. I. Zaitsev, I. G. Rodionova, D. L. D’yakonov, and N. A. Arutyunyan, “Regularities of titanium carbide precipitation in low carbon Ti–Mo microalloyed high strength steels,” Metallurgist, 60, No. 8, 810–816 (2016).

    CAS  Article  Google Scholar 

  25. 25.

    A. V. Koldaev, F. V. Arifulov, A. I. Zaitsev, N. A. Arutyunyan, and N. M. Aleksandrova, “Effect of excess phase precipitates on structural steel strengthening prepared by hot stamping,” Metallurg, No. 5, 50–55 (2020).

    Google Scholar 

  26. 26.

    A. V. Koldaev, D. L. D’yakonov, A. I. Zaitsev, and N. A. Arutyunyan, “Kinetics of the formation of nanosize niobium carbonitride precipitates in low-alloy structural steels,” Metallurgist, 60, No. 9, 1032–1037 (2017).

    CAS  Article  Google Scholar 

  27. 27.

    W. B. Lee, S. G. Hong, C. G. Park, K. H. Kim, and S. H. Park, “Influence of Mo on precipitation hardening in hot rolled HSLA steels containing Nb,” Scripta Mater., 43, 319–324 (2000).

    CAS  Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to A. I. Zaitsev.

Additional information

Translated from Metallurg, Vol. 64, No. 10, pp. 19–27, October, 2020.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Zaitsev, A.I., Rodionova, I.G., Koldaev, A.V. et al. Study of Conditions for Improving Chemical and Structural Homogeneity of Ferritic Class Hot-Rolled Steels. Metallurgist 64, 997–1007 (2021). https://doi.org/10.1007/s11015-021-01081-5

Download citation

Keywords

  • ferritic class low-carbon steels
  • microalloying
  • phase precipitates
  • hot rolling
  • composition
  • structure
  • homogeneity
  • service properties
  • production parameters