, Volume 61, Issue 11–12, pp 1093–1101 | Cite as

Study of Low-Carbon Pipe Steel Strain Ageing

  • I. Yu. Pyshmintsev
  • M. A. Smirnov
  • O. V. Varnak
  • A. N. Mal’tseva
  • Yu. N. Goikhenberg

Strain aging of pipe steels 06G2FB and 07G2MFB with ferrite-pearlite and ferrite-bainite structures is investigated. It is established that a ferrite-bainite structure is more inclined towards strain aging than a ferrite-pearlite structure. The tendency towards strain aging of steel with a ferrite-bainite structure increases with increasing austenitizing temperature. During hot plastic deformation there is development of recrystallization and the tendency towards strain aging decreases.


low-carbon pipe steel strain aging ferrite bainite mechanical properties austenitizing temperature hot plastic deformation 


  1. 1.
    O. V. Livanova, G. A. Filippov, and V. F. Dmitriev, “Degradation of metal properties during prolonged pipeline operation,” Stal, No. 2, 84–87 (2003).Google Scholar
  2. 2.
    K. M. Yamoleev, Aging of Pipe Metal During Pipeline Operation, VNIIOENG, Moscow (1990).Google Scholar
  3. 3.
    P. D. Odesskii, “Steel property degradation for metal structures,” Zavod. Lab., 6, No. 10, 41–49 (2003).Google Scholar
  4. 4.
    I. P. Shabalov, M. V. Likhachev, and P. A. Odesskii, “Standard estimates of metal failure resistance for gas pipelines of K65 and strip for them,” Stal, No. 12, 51–61 (2013).Google Scholar
  5. 5.
    Yu. P. Gul’, “Effect of carbon and nitrogen on strengthening and embrittlement during low-carbon steel ageing,” MiTOM, No. 7, 8–12 (1975).Google Scholar
  6. 6.
    I. Yu. Pyshmintsev, A. N. Boryakova, and M. A. Smirnov, “Effect of cooling rate on the structure and properties of low-carbon pipe steel,” Metallurg, No. 8, 48–51 (2008).Google Scholar
  7. 7.
    M. A. Smirnov, I. Yu. Pyshmitsev, and A. N. Boryakova, “Classification of the microstructure of low-carbon pipe steels,” Metallurg, No. 7, 45–51 (2010).Google Scholar
  8. 8.
    M. A. Smirnov, V. M. Shastlivtsev, and L. G. Zhuravlev, Bases of Steel Heat Treatment, URO RAN, Ekaterinburg (1999).Google Scholar
  9. 9.
    V. M. Shastlivtsev, T. I. Tabatchikova, I. L. Yakovleva, et al., “Features of the structure of bainite in low-carbon weldable steels after thermomechanical treatment,” Vopr. Materialoved., No. 3, 26–38 (2009).Google Scholar
  10. 10.
    M. A. Smirnov, I. Yu. Pyshmintsev, A. N. Mal’tseva, and O. V. Mushina, “Effect of a ferrite-bainite structure on properties of high-strength pipe steel,” Metallurg, No. 1, 55–62 (2012).Google Scholar
  11. 11.
    V. K. Babich. Yu. P. Gul’, and I. E. Dolzhenkov, Steels Strain Ageing, Metallurgiya, Moscow (1972).Google Scholar
  12. 12.
    Yu. I. Matrosov, A. A. Litvinenko, and S. A. Golovanenko, Steel for Main Gas Pipelines, Metallurgiya, Moscow (1989).Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • I. Yu. Pyshmintsev
    • 1
  • M. A. Smirnov
    • 1
  • O. V. Varnak
    • 1
  • A. N. Mal’tseva
    • 1
  • Yu. N. Goikhenberg
    • 2
  1. 1.Russian Research Institute of the Pipe Industry (RosNITI)ChelyabinskRussia
  2. 2.South-Ural State UniversityChelyabinskRussia

Personalised recommendations