Advertisement

Metallurgist

, Volume 61, Issue 11–12, pp 1067–1074 | Cite as

Control over the Formation of Continuously Cast Billets with the Use of Vibrating Molds in Machines for Continuous Casting

  • A. S. El’darkhanov
  • A. S. Nuradinov
  • S. S.-S. Akhtaev
Article

For AD31 aluminum alloy, we study the influences of the shape of the heat-removing surface of the mold and its vibration on the formation of cast billets. It is shown that both factors significantly decrease the area of columnar crystals, lead to grinding of the macro- and microstructures of billets, and improve the properties of the metal. It is shown that the vibration treatment of a billet almost removes the anisotropy of properties over its zones.

Keywords

billet mold vibration artificial roughness structure properties 

References

  1. 1.
    V. O. Abramov, O. V. Abramov, V. V. Artem’ev, et al., Powerful Ultrasound in Metallurgy and Machine Building, Yanus-K, Moscow (2006).Google Scholar
  2. 2.
    V. A. Efimov and A. S. El’darkhanov, Physical Methods for Affecting the Processes of Solidification of Alloys, Metallurgiya, Moscow (1995).Google Scholar
  3. 3.
    A. A. Skvortsov, A. D. Akimenko, and V. A. Ul’yanov, Influence of External Actions on the Processes of Formation of Ingots and Billets, Metallurgiya, Moscow (1991).Google Scholar
  4. 4.
    A. S. El’darkhanov, A. S. Nuradinov, S. S-S. Akhtaev, and N. S. Uzdieva, “Intensification of heat exchange in the mold of an MCCB,” Stal, No. 5, 21–25 (2017).Google Scholar
  5. 5.
    A. A. Abrikosov, Fundamentals of the Theory of Metals, North Holland, Amsterdam (1988).Google Scholar
  6. 6.
    N. W. Ashcroft and N. D. Mermin, Solid State Physics, Holt, Rinehart, and Winston, New York (1976).Google Scholar
  7. 7.
    J. Campbell, “Effects of vibration during solidification,” Int. Metals Revisers, No. 2, 71–108 (1981).Google Scholar
  8. 8.
    Y. Itoh, T. Okajama, and K. Tashiko, “On refining of solidification of ferritic stainless steel by vibration method,” Trans. Iron Steel Inst. Japan, 21, No. 6, 397–404 (1981).CrossRefGoogle Scholar
  9. 9.
    A. N. Smirnov, V. L. Pilyushenko, S. V. Momot, and V. N. Amitan, Solidification of Metallic Melts under External Actions, VIK, Donetsk (2002).Google Scholar
  10. 10.
    B. I. Dobatkin, Melting and Casting of Aluminum Alloys, Metallurgiya, Moscow (1983).Google Scholar
  11. 11.
    B. I. Dobatkin and V. I. Elagin, Granulated Aluminum Alloys, Metallurgiya, Moscow (1981).Google Scholar
  12. 12.
    T. A. Bogdanova, N. N. Dovzhenko, T. R. Gil’manshina, et al., Structure Formation in Cast Aluminum Alloys in the Course of Low-Pressure Casting, SibFU, Krasnoyarsk (2015).Google Scholar
  13. 13.
    V. A. Efimov, “Prospects of the development of works on the application of external actions to liquid crystallizing melts,” in: Influence of External Actions on Liquid and Crystallizing Metals, Naukova Dumka, Kiev (1983), pp. 3–22.Google Scholar
  14. 14.
    J. Campbell, “Grain refinement of solidifying metals by vibration: A survey,” in: Solidification Technology in the Foundry and Cast House, Metals Society, London (1983), pp. 61–64.Google Scholar
  15. 15.
    G. S. Makarov, Ingots Made of Aluminum Alloys with Magnesium and Silicon for Pressing, Intermet Inzhiniring, Moscow (2011).Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • A. S. El’darkhanov
    • 1
  • A. S. Nuradinov
    • 2
  • S. S.-S. Akhtaev
    • 2
  1. 1.Contemporary Materials and Technologies Scientific CenterMoscowRussia
  2. 2.Groznyi State Oil Technical UniversityGroznyiRussia

Personalised recommendations