Investigation and Computer Design of the Technological Modes of Continuous Rolling of Thin Brass Strips with Specified Accuracy

  • R. L. Shatalov
  • A. S. Lukash
  • A. M. Zaikin
  • S. P. Zholobov
  • A. A. Agafonov
Article

We developed a software system for the numerical analysis and design of the technological modes of continuous rolling of copper and brass strips, which enables us to investigate and design the conditions of deformation required to form specified transverse deviations of the thickness of rolled products. We refined the regularities of the influence of various lubricants and the models of distribution of tangential stresses along the contact arc (according to Coulomb and Zibel) on the pressure, rolling forces, and transverse profiles of the strips of L63 brass. We give recommendations concerning the technological mode and contouring of the rolls in a Tandem-1000 continuous three-stand rolling mill-1000 at the Kirov Nonferrous Metals Processing Plant with an aim to reduce transverse deviations of the thickness of thin strips of L63 brass.

Keywords

cold rolling of strips continuous strip-rolling mill-1000 of the Kirov Non-Ferrous Metals Processing Plant software system for the design of the parameters of rolling lubrication of rolls rolling forces transverse deviations of the thickness of strips 

References

  1. 1.
    R. L. Shatalov, A. S. Lukash, and V. M. Lugovskoi, “Computer simulation and design of the continuous rolling process of strips,” in: Proc. Int. Sci.-Pract. Conf. Innovative Technologies of Plastic Working of Metals, NITU MISiS, Moscow (2001), pp. 232–236.Google Scholar
  2. 2.
    P. I. Polukhin, G. Ya. Gun, and A. M. Galkin, Resistance of Metals and Alloys to Plastic Deformation: Handbook, Metallurgiya, Moscow (1983).Google Scholar
  3. 3.
    A. V. Zinov’ev, A. I. Kolpashnikov, P. I. Polukhin, et al., Technology of Plastic Working of Nonferrous Metals and Alloys: Textbook, Metallurgiya, Moscow (1992).Google Scholar
  4. 4.
    A. A. Bogatov, Mechanical Properties and Models of Fracture of the Metals, UGTU-UPI, Ekaterinburg (2002).Google Scholar
  5. 5.
    R. L. Shatalov, A. S. Lukash, and Yu. F. Timin, “Creation and investigation of a microprocessor system of control over the rolling forces in a two-roll sheet mill,” Metallurg, No. 10, 70–73 (2015).Google Scholar
  6. 6.
    R. L. Shatalov, A. S. Lukash, and V. L. Zisel’man, “Determination of the mechanical properties of copper and brass strips according to the parameters of hardness in cold rolling,” Tsvet. Met., No. 5, 61–65 (2014).Google Scholar
  7. 7.
    A. I. Tselikov, P. I. Polukhin, V. M. Grebenik, et al., Machines and Units of Metallurgical Works, Vol. 3, Machines and Units for the Production and Finishing of Rolled Products, Metallurgiya, Moscow (1988).Google Scholar
  8. 8.
    A. A. Korolev, Design and Numerical Analyses of Machines and Mechanisms of Rolling Mills, Metallurgiya, Moscow (1985).Google Scholar
  9. 9.
    A. P. Grudev, External Friction in Rolling, Metallurgiya, Moscow (1973).Google Scholar
  10. 10.
    Yu. D. Zheleznov, S. L. Kotsar’, and A. G. Abiev, Statistical Investigations of the Accuracy of Sheet Rolling (1974).Google Scholar
  11. 11.
    T-Mike EM Ultrasonic Material Thickness Gauge: StressTel Manual (2007).Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • R. L. Shatalov
    • 1
  • A. S. Lukash
    • 1
  • A. M. Zaikin
    • 2
  • S. P. Zholobov
    • 2
  • A. A. Agafonov
    • 2
  1. 1.Moscow Polytechnic UniversityMoscowRussia
  2. 2.Kirov Nonferrous Metals Processing PlantKirovRussia

Personalised recommendations