, Volume 61, Issue 11–12, pp 925–933 | Cite as

Prediction of the Fracture of Metal in the Process of Screw Rolling in a Two-Roll Mill

  • M. M. Skripalenko
  • B. A. Romantsev
  • S. P. Galkin
  • M. N. Skripalenko
  • L. M. Kaputkina
  • Tran Ba Huy

We study the process of two-roll screw rolling of billets made of stainless steel in order to estimate the influence of the feed angle on the plasticity of the metal of rolling billets. Pilot rollings were simulated by using the DEFORM software. In the computer simulation, the normalized Cockroft–Latham fracture criterion is used to predict the so-called Mannesmann effect (axial fracture of a billet). The comparison of the results of pilot rollings with the data of computer simulations showed that this fracture criterion is an efficient tool for the investigation of screw rolling. A procedure is proposed for the prediction of fracture of the metal subjected to screw rolling.


screw rolling Mannesmann effect normalized Cockroft–Latham fracture criterion plasticity fracture accumulated strains stiffness coefficient in the stressed state computer simulation 


  1. 1.
    B. A. Romantsev, A. V. Goncharuk, N. M. Vavilkin, and S. V. Samusev, Plastic Metal Forming, MISiS, Moscow (2008).Google Scholar
  2. 2.
    B. A. Romantsev, A. V. Goncharuk, N. M. Vavilkin, and S. V. Samusev, Pipe Production, MISiS, Moscow (2011).Google Scholar
  3. 3.
    P. K. Teterin, Theory of Cross and Screw Rolling, Metallurgiya, Moscow (1983).Google Scholar
  4. 4.
    B. A. Romantsev, M. M. Skripalenko, M. N. Skripalenko, and C. B. Hui, “Modeling the piercing of semifinished products in a three-roll rotary rolling mill on a hollow mandrel,” Metallurgist, 59, No. 7–8, 557–561 (2015), DOI: Scholar
  5. 5., acc. June 10, 2017.
  6. 6.
    Y. Li Wang et al., “Gradient structure produced by three roll planetary milling: Numerical simulation and microstructural observations,” Mater. Sci. Eng., A 639, 165–172 (2015), DOI: Scholar
  7. 7., acc. June 10, 2017.
  8. 8.
    Z. Pater, J. Kazanecki, and J. Bartnicki, “Three dimensional thermo-mechanical simulation of the tube forming process in Diescher’s mill,” J. Mater. Proc. Technol., 177, 167–170 (2006), DOI: Scholar
  9. 9.
    Z. Pater and J. Kazanecki, “Complex numerical analysis of the tube forming process using Diescher mill,” Arch. Metal. Mater., 58, Iss. 3, 717–724 (2013), DOI: 10.2478/amm-2013-0060.Google Scholar
  10. 10., acc. June 10, 2017.
  11. 11.
    L. Lu, Z.-Xu Wang, Fu-Z. Wang, et al., “Simulation of tube forming process in Mannesmann mill,” J. Shanghai Jiaotong Univ. (Sci.), 16, 281–285 (2011),
  12. 12., acc. June 10, 2017.
  13. 13.
    A. Stefanik, P. Szota, S. Mroz, and H. Dyja, “Application of the three-roll skew rolling to magnesium rods production,” Mater. Testing,. 58, No. 5, 438–441 (2016).CrossRefGoogle Scholar
  14. 14.
    S. P. Galkin, “Regulating radial-shear and screw rolling on the basis of the metal trajectory,” Steel Translat., 34, No. 7, 57–60 (2004).Google Scholar
  15. 15.
    S. Z. Li, W. H. Meng, L. W. Hu, and B. Ding, “Research on the tendency of inner crack during 3-roll skew rolling process of round billets,” Adv. Mater. Res., 145, 238–242 (2011),, acc. June 10, 2017.
  16. 16.
    S. Chiluveru, Computational Modeling of Crack Initiation in Crossroll Piercing, Massachusetts Institute of Technology, Cambridge, MA (2007).Google Scholar
  17. 17.
  18. 18.
    Modeling of the Mannesmann Effect in Tube Piercing, Padua@Research [Padova Digital University Archive],, acc. June 10, 2017.
  19. 19., acc. June 10, 2017.
  20. 20.
    M. M. Skripalenko and M. N. Skripalenko, “On choosing software for simulating metal-forming processes,” Metallurgist, 57, Nos. 1–2, 3–7 (2013), DOI:
  21. 21.
    A. V. Vlasov, “Numerical analysis of damage to the metal caused by cold radial forging according to the results of a finite-element simulation in the DEFORM-3D program,” in: Proc. Int. Sci.-Eng. Conf. Engineering Systems – 2009, Moscow (2009), pp. 204–217.Google Scholar
  22. 22.
    A. N. Nikulin, Screw Rolling. Stresses, and Strains, Metallurgizdat, Moscow (2015).Google Scholar
  23. 23.
    V. L. Kolmogorov, Mechanics of Plastic Metal Working, Ural STU, Ekaterinburg (2001).Google Scholar
  24. 24.
  25. 25.
    Y. Lou, H. Huh, S. Lim, and K. Pack, “New ductile fracture criterion for prediction of fracture forming limit diagrams of sheet metals,” Int. J. Solids and Struct., 49, 3605–3615 (2017), DOI: 10.1016/j.ijsolstr.2012.02.016,, acc. June 10, 2017.
  26. 26.
    A. I. Lisitsyn and V. Ya. Ostrenko, Modeling of the Processes of Plastic Metal Working (optical methods), Tekhnika, Kiev (1976).Google Scholar
  27. 27.
    A. P. Chekmarev, Yu. M. Matveev, V. N. Vydrin, and Ya. S. Finkel’shtein, Intensification of Cross Screw Rolling, Metallurgiya, Moscow (1970).Google Scholar
  28. 28.
    A. V. Belevich, Modeling of the Parameters of Plasticity and Strain Resistance of Steels and Alloys, Vladimir State Univ., Vladimir (2005).Google Scholar
  29. 29.
    V. A. Belevitin, Development and Improvement of the Methods of Experimental Mechanics for the Optimization of the Technological Processes of Plastic Metal Forming: Dissert. Doct. Techn. Sci., Verkhnii Ufalei (1997).Google Scholar
  30. 30.
    P. I. Polukhin, V. K. Vorontsov, V. A. Belevitin, et al., “Evaluation of the stressed state in the processes of cross forging and screw or cross rolling,” in: Plastic Deformation of Metals and Alloys: Coll. Works of MISiS, Metallurgiya, Moscow (1982), pp. 145–150.Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • M. M. Skripalenko
    • 1
  • B. A. Romantsev
    • 1
  • S. P. Galkin
    • 1
  • M. N. Skripalenko
    • 1
  • L. M. Kaputkina
    • 1
  • Tran Ba Huy
    • 1
  1. 1.National University of Science and Technology MISiSMoscowRussia

Personalised recommendations