Advertisement

Metallurgist

, Volume 60, Issue 7–8, pp 802–809 | Cite as

High-Strength Corrosion-Resistant Cryogenic Steel Alloyed with Nitrogen

  • L. M. Kaputkina
  • A. G. Svyazhin
  • I. V. Smarygina
  • V. E. Kindop
  • V. E. Bazhenov
Article

Comparative studies are provided for cryogenic austenitic steels. All of the steels studied may be used as cryogenic materials with increased strength. A new economic low-nickel steel Cr19Ni6Mn10Mo2N has the highest strength level in hot-rolled and cold-rolled conditions from the austenitic condition region, and this provides effective use within the Arctic and Antarctic climatic regions. This steel has a stable austenitic structure and quite good mechanical properties from +100 to –170°C and at these temperatures may replace highly alloyed steel type Cr22Ni16Mn7N. Traditional steel Cr19Ni9N may only be used as cryogenic material for undeformable objects since below 70°C strain-induced martensite may form within it.

Keywords

austenitic steels for low temperature alloying with nitrogen treatment thermal stability properties 

References

  1. 1.
    Yu. P. Solntsev, Steel and Alloy Cold Resistance, Textbook, Khimizdat, St. Petersburg (2005).Google Scholar
  2. 2.
    M. I. Gol’dshtein, S. V. Grachev, and Yu. G. Veksler, Special Steels, Textbook, MISiS, Moscow (1999).Google Scholar
  3. 3.
    E. A. Ul’yanin and N. A. Sorokina, Steels and Alloys for Cryogenic Technology, Metallurgiya, Moscow (1984).Google Scholar
  4. 4.
    Yu. P. Solntsev, B. S. Ermakov, and O. I. Sleptsov, Materials for Low and Cryogenic Temperatures: Encyclop. Handbook, Khimizdat, St. Petersburg (2008).Google Scholar
  5. 5.
    A. A. Anisimov and Yu. P. Solntsev, “Determination of optimum maraging steel composition for cryogenic temperatures by the main component method,” in: Strength of Materials and Structures at Low Temperature, Izd. Univ. Nizkotemp. Pishch. Tekhnol., St. Petersburg (2002).Google Scholar
  6. 6.
    S. R. Birman, Economically Alloyed Maraging Steels, Metallurgiya, Moscow (1974).Google Scholar
  7. 7.
    F. B. Pickering, Physical Metallurgy and Steel Development [Russian translation], Metallurgiya, Moscow (1982).Google Scholar
  8. 8.
    T. Hirayama and M. Ogirima, “Infl uence of chemical composition on martensitic transformation in Fe–Cr–Ni stainless steel,” J. Jap. Inst. Metals and Mater., 34, 507–516 (1970).Google Scholar
  9. 9.
    A. G. Svyazhin, V. E. Bazhenov, L. M. Kaoutkina, et al., “Critical nitrogen concentration in high-nitrogen steels providing dense ingot preparation,” Metallurg, No. 11, 41–46 (2014).Google Scholar
  10. 10.
    E. V. Shytov, E. Y. Kolpishon, M. V. Ivanova, et al., “Problems of P-900 steel retaining rings production,” Proc. Int. Conf. on High Nitrogen Steels, Beijing, China, 2006, Metallurg. Soc. Press (2006), pp. 290–294.Google Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  • L. M. Kaputkina
    • 1
  • A. G. Svyazhin
    • 1
  • I. V. Smarygina
    • 1
  • V. E. Kindop
    • 1
  • V. E. Bazhenov
    • 1
  1. 1.National University of Science and Technology MISiSMoscowRussia

Personalised recommendations