Advertisement

Metallurgist

, Volume 60, Issue 5–6, pp 533–537 | Cite as

Modification of the Surface of Products by Plastic Deformation and Deposition of Functional Coatings*

  • L. S. Belevskii
  • I. V. Belevskaya
  • V. K. Belov
  • E. V. Gubarev
  • Yu. Yu. Efimova
Article
  • 28 Downloads

The possibility of using a rotary-disk sectional wire brush has been investigated for the nanostructuring of metal products’ surface layer and the subsequent application of functional coatings. It was established that a nanostructured surface layer with fragment dimensions up to 0.13 μm can be obtained by a percussive-frictional method that is similar to high-rate plastic deformation. The microtopography of specimen surfaces was studied under different processing modes.

Keywords

surface hardening nanostructure friction cladding flexible tool microtopography 

References

  1. 1.
    L. S. Belevskii, Plastic Deformation of the Surface Layer and the Formation of a Coating with a Flexible Tool, Litsei RAN, Magnitogorsk (1996).Google Scholar
  2. 2.
    L. S. Belevskii, S. A. Tulupov, O. M. Smirnov, et al., “Frictional metal-on-metal cladding. Thermoplastic deformation and interactions of the clad surface with the cladding layer,” Metallurg, No. 10, 33–38 (2006).Google Scholar
  3. 3.
    L. S. Belevskii, S. A. Tulupov, O. M. Smirnov, et al., “Frictional metal-on-metal cladding. Mechanism of friction cladding,” Metallurg, No. 11, 36–38 (2006).Google Scholar
  4. 4.
    L. S. Belevskii, I. V. Belevskaya, and Yu. Yu. Efimova, “Frictional nanostructure-forming treatment for metal surfaces and the application of functional coatings with a flexible tool,” Poroshk. Metall. Funkts. Pokrytiya, No. 1, 70–76 (2014).Google Scholar
  5. 5.
    Yu. I. Kurguzov and D. D. Papshev, “Technological assurance of surface quality in strengthening with mechanical brushes,” Vestn. Mashinostr., No. 4, 54–58 (1986).Google Scholar
  6. 6.
    E. V. Perepichka, Use of Brushes for a Cleaning-Strengthening Treatment for Products, Mashinostroenie, Moscow (1989).Google Scholar
  7. 7.
    N. V. Koptseva, Yu. Yu. Efimova, M. P. Baryshnikov, and O. A. Nikitenko, “Formation of the structure and mechanical properties of plain carbon steel during its nanostructuring by equal-channel angular pressing” Deform. Razrush. Mater., No. 7, 11–17 (2011).Google Scholar
  8. 8.
    N. V. Koptseva, M. V. Chukin, and O. A. Nikitenko, “Use of the Thixomet PRO software for quantitative analysis of the ultrafine-grain structure of low- and medium-carbon steels subjected to equal-channel angular pressing,” Met. Sci. Heat Treat., 54, No. 7–8, 387–392 (2012).CrossRefGoogle Scholar
  9. 9.
    V. K. Belov, D. O. Begletsov, E. B. Gubarev, et al., “Features of the use of 3D topographic characteristics of a surface in engineering,” Vestn. MGTU, No. 1 (45), 73–80 (2014).Google Scholar
  10. 10.
    V. K. Belov and M. V. Dyakova, “New in metrology: replacement of 2D parameters for the microtopography of a profile by 3D parameters for the microtopography of a surface,” Kontrol i Diagn., No. 7, 57–63 (2012).Google Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  • L. S. Belevskii
    • 1
  • I. V. Belevskaya
    • 1
  • V. K. Belov
    • 1
  • E. V. Gubarev
    • 1
  • Yu. Yu. Efimova
    • 1
  1. 1.Magnitogorsk State Technical UniversityMagnitogorskRussia

Personalised recommendations