Advertisement

Metallurgist

, Volume 58, Issue 9–10, pp 746–751 | Cite as

Sinter Production at the Novolipetsk Metallurgical Combine: Traditions, Innovations, Growth

  • S. V. Filatov
  • I. F. Kurunov
  • S. N. Grachev
  • N. A. Titov
  • D. N. Tikhonov
Article
  • 70 Downloads

The Novolipetsk Metallurgical Plant was built in the 1930s and made foundry iron for machine-building plants, but during the 1960s and 1970s it became a metallurgical combine having the most modern and largest sinter plant and blast furnaces in the USSR. Equipment modernization and improvements to the technologies that are used increased the productivity of the sinter plant by 25%. The productivity of the combine’s blast furnaces has increased 20% thanks to an improvement to the quality of the coke and sinter during 2013–2014, and the new blast furnace Rossiyanka, built in 2011, is setting a new record for productivity – 87–89 tons/m2 per day.

Keywords

sinter plant sinter technology blast furnace modernization capacity coke quality 

References

  1. 1.
    G. V. Korshikov, B. F. Chernobrivets, S. L. Zevin, et al., “Results from commercial sintering and the production of sinters differing in basicity,” Chern. Metall.: Byul. NTiEI, No. 19, 35–37 (1984).Google Scholar
  2. 2.
    V. N. Skorokhodov, G. V. Korshikov, and S. L. Zevin, “Mastering the production of fluxed sinter made from fine-grained concentrates based on ferruginous quartzites in the KMA,” Stal, No. 10, 8–13 (1998).Google Scholar
  3. 3.
    G. V. Korshikov, S. L. Zevin, B. F. Chernobrivets, et al., “New technology for making low-basicity sinter,” Stal, No. 10, 10–17 (1994).Google Scholar
  4. 4.
    I. V. Frantsenyuk, G. V. Korshikov, N. S. Inozemtsev, et al., Patent No. 2136761 RF, IPC6 C21B3/00, “Method for washing the hearth of a blast furnace,” subm. 09.28.1998, publ. 09.10.1999, Byull., No. 25.Google Scholar
  5. 5.
    E. M. Shcheglov, D. P. Kholodnyi, S. N. Grachev, et al., “Improving the technology for the blow-in and operation of blast furnaces after class-I and class-II overhauls,” Metallurg, No. 12, 40–43 (2013).Google Scholar
  6. 6.
    V. S. Lisin, V. N. Skorokhodov, V. P. Nastich, et al., Patent No. 2146297 RF, IPC7 C22B1/16, “Charge for obtaining high-basicity sinter,” subm. 07.06.1999, publ. 03.10.2000.Google Scholar
  7. 7.
    D. N. Tikhonov, N. R. Mansurova, A. M. Baryshnikov, et al., “Experience with stabilization of the chemical composition of sinter by means of the MAYA on-line analyzer,” Metallurg, No. 2, 40–43 (2013).Google Scholar
  8. 8.
    I. F. Kurunov, S. S. Laypin, V. L. Emel’yanov, et al., “Blast furnace No. 6 at the NLMK – the best Russian blast furnace,” Metallurg, No. 10, 40–45 (2008).Google Scholar
  9. 9.
    Z. I. Nekrasov, N. S. Antipov, N. M. Mozharenko, and F. N. Moskalina, “Initial experience with the operation of a 2000-m3 blast furnace with a blast having an oxygen content of up to 40%,” Stal, No. 7, 7–9 (1981).Google Scholar
  10. 10.
    I. F. Kurunov, A. G. Murav’ev, I. E. Sperkach, and P. P. Kholodnyi, Patent No. 2383627 RF, IPC C21B7/24, “System for preparing a fuel gas for a blast furnace,” subm. 09.01.2008, publ. 03.10.2010.Google Scholar
  11. 11.
    I. F. Kurunov, I. S. Yarikov, S. S. Lyapin, and V. L. Emel’yanov, “Experience with the use of shungite in the production of conversion pig iron,” Stal, No. 7, 9–13 (2003).Google Scholar
  12. 12.
    I. F. Kurunov, “Mechanism and theoretical estimation of the replacement of coke by shungite in blast-furnace smelting,” Izv. Vyssh. Uchebn. Zaved. Chern. Metall., No. 7, 20–24 (2003).Google Scholar
  13. 13.
    I. F. Kurunov, V. N. Loginov, S. S. Laypin, et al., “New technical solutions for protecting the lining of the hearth of blast furnaces,” Metallurg, No. 8, 53–57 (2007).Google Scholar
  14. 14.
    E. A. Samsikov, A. A. Kononnov, and I. F. Kurunov, Patent No. 2288406 RF, IPC F23G7/04, “Method of recycling organochlorine wastes,” subm. 06.11.2004, publ. 11.20.2005.Google Scholar
  15. 15.
    I. F. Kurnov, E. M. Shcheglov, A. I. Kononov, and O. G. Bol’shakova, “Study of the metallurgical properties of briquettes made from technogenic and natural raw materials and assessment of their use in blast-furnace smelting. Part I,” Chern. Metall.: Byul. NTiIE, No. 12, 39–48 (2007).Google Scholar
  16. 16.
    I. F. Kurunov, E. M. Shcheglov, V. L. Emel’yanov, and O. G. Bol’shakova,“ Study of the metallurgical properties of briquettes made from technogenic and natural raw materials and assessment of their use in blast-furnace smelting. Part 2,” Chern. Metall.: Byul. NTiIE, No. 1, 8–17 (2008).Google Scholar
  17. 17.
    I. Kurunov, V. Titov, E. Sheglov, et al., “Efficiency of Using Briquettes from Technogenic and Natural Raw Materials in Blast Furnace Process,” Proc. 5th Int. Congr. Science and Technology of Ironmaking, ICSTI’09, Oct. 20–22, 2009, Shanghai, China, pp. 678–684.Google Scholar
  18. 18.
    I. F. Kurunov and A. M. Bizhanov, “Brex – a new stage in the agglomeration of raw materials for blast furnaces,” Metallurg, No. 3, 49–53 (2014).Google Scholar
  19. 19.
    V. A. Dobroskok, I. F. Kurunov, Yu. S. Karabasov, et al., Patent No. 2119537 RF, IPC6 C21B7/24, “Probe-based scanning system,” subm. 08.20.1997, publ. 09.27.1998.Google Scholar
  20. 20.
    S. V. Filatov, S. N. Grachev, E. M. Shcheglov, et al., “Rossiyanka – the world leader in productivity,” Chern. Metall: Byul. NTiIE, No. 4, 22–25 (2014).Google Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  • S. V. Filatov
    • 1
  • I. F. Kurunov
    • 1
  • S. N. Grachev
    • 1
  • N. A. Titov
    • 1
  • D. N. Tikhonov
    • 1
  1. 1.Novolipetsk Metallurgical Combine (NLMK)LipetskRussia

Personalised recommendations