, Volume 59, Issue 3–4, pp 241–247 | Cite as

Use of Hydrogen Heat Treatment in the Production of Porous Materials and Objects Made from Titanium Fiber and Wire

  • M. Yu. Kollerov
  • S. D. Shlyapin
  • K. S. Senkevich
  • A. A. Kazantsev
  • Yu. E. Runova

The possibility is investigated of improving mechanical properties of porous materials made from sintered titanium fibers and wire by hydrogen heat treatment. It is shown that the use of hydrogen heat treatment makes it possible to improve the strength of individually joined fibers and material as a whole. This makes it possible to prepare strong material with a high volume fraction of pores with a cross section of 100–500 μm and exhibiting good osteointegration capacity. This material is promising for preparing implants, replacing bone defects, or creating functional coatings on endoprosthesis elements.


titanium porous material fiber wire implants structure properties hydrogen heat treatment 


The results of the work were obtained within the framework of Federal Targeted Program on Research and Development for Priority Areas of Developing the Scientific and Technological Complex of Russia in 2014–2020 according to subsidy agreement No. 14.577.21.0013 (unique agreement identifier RFMEFI577714XX0013).


  1. 1.
    R. Garret, P. Abhag, and P. A. Dimitrios, “Fabrication methods of porous metals for use in orthopaedic applications,” Biomaterials, 27, 2651–2670 (2006).CrossRefGoogle Scholar
  2. 2.
    M. Thieme, K. R. Wieters, F. Bergner, et al., “Titanium powder sintering for preparation of a porous functional graded material destined for orthopaedic implants,” J. Mater Sci. Mater. in Med., No. 12, 225–231 (2001).Google Scholar
  3. 3.
    A. A. Il’in, A. M. Mamonov, and S. V. Skvortsova, “Fields and prospects for using hydrogen heat treatment of titanium alloys,” Metally, No. 5, 49056 (2001).Google Scholar
  4. 4.
    A. A. Il’in, S. V. Skvortsova, A. M. Mamonov, and V. N. Karpov, “Use of materials not based on titanium for preparing medicinal implants,” Metally, No. 3, 97–104 (2003).Google Scholar
  5. 5.
    A. A. Il’in, S. V. Skvortsova, A. M. Mamonov, et al., “Effect of hydrogen heat treatment on structure and properties of titanium alloy castings,” MiTOM, No. 5, 10–13 (2002).Google Scholar
  6. 6.
    A. A. Il’in, S. V. Skvortsova, V. S. Spektrov, et al., “Interconnection of structure and set of mechanical properties for titanium alloy VT6,” Titan, No. 1(31), 26–29 (2011).Google Scholar
  7. 7.
    A. A. Il’in, B. A. Kolachev, V. K. Nosov, and A. M. Mamonov, Hydrogen Technology of Titanium Alloys, MiSIS, Moscow (2002).Google Scholar
  8. 8.
    K. S. Senkevich, and S. V. Skvortsova, “Effect of hydrogen heat treatment on powder metallurgy and solid-phase titanium alloy compounds,” Tekhnol. Legk. Splav., No. 2, 70–77 (2012).Google Scholar
  9. 9.
    D. E. Gusev, K. S. Senkevich, S. D. Shlyapin, and M. Yu. Kollerov, “Special features of production of porous implants by diffusion welding and thermal hydrogen treatment,” Weld. Int., 25, No. 6, 466–471 (2011).CrossRefGoogle Scholar
  10. 10.
    J. C. Feng, H. Liu, P. He, and J. Cao, “Effects of hydrogen on diffusion bonding of hydrogenated Ti6Al4V alloy containing 0.3 wt.% hydrogen at fast heating rate,” Int. J. Hydrogen Energy, No. 32, 3054–3058 (2007).Google Scholar
  11. 11.
    M. Yu. Kollerov, M. M. Serov, S. D. Shlyapin, and Yu. E. Runova, “Study of the possibility of preparing porous material from titanium fi bers,” Tekhnol. Mashinostr., No. 9(135), 5–9 (2013).Google Scholar
  12. 12.
    S. D. Shlyapin, M. Yu. Kollerov, D. E. Gusev, et al., “Preparation of porous medicinal implants using diffusion welding,” Tekhnol. Legk. Splav., No. 3, 138–143 (2007).Google Scholar
  13. 13.
    G. He, P. Liu, and Q. Tan, “Porous titanium materials with entangled wire structure for load-bearing biomedical applications,” J. Mech. Behav. Biomed. Mater., No. 5, 16–31 (2012).Google Scholar
  14. 14.
    A. P. Rubshtein, I. Sh. Trakhtenberg, E. B. Makarova, et al., “Porous material based on spongy titanium granules: Structure, mechanical properties, and osseointegration,” Mat. Sci. Eng., 35, 363–369 (2014).CrossRefGoogle Scholar
  15. 15.
    J. Parthasarathy, B. Starly, S. Raman, and A. Christensen, “Mechanical evaluation of porous titanium (Ti6Al4V) structures with electron beam melting (EBM),” J. Mech. Behav. Biomed. Mater., No. 3, 249–259 (2010).Google Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  • M. Yu. Kollerov
    • 1
  • S. D. Shlyapin
    • 1
  • K. S. Senkevich
    • 1
  • A. A. Kazantsev
    • 2
  • Yu. E. Runova
    • 1
  1. 1.Tsiolkovskii Russian State Technological University (MATI)MoscowRussia
  2. 2.NPF TempEkaterinburgRussia

Personalised recommendations