Advertisement

Metallurgist

, Volume 59, Issue 1–2, pp 104–112 | Cite as

Software for the Raw-Materials Management System in Blast-Furnace Smelting

  • N. A. Spirin
  • V. V. Lavrov
  • I. E. Kosachenko
  • O. P. Onorin
  • A. S. Istomin
  • A. A. Burykin
  • K. A. Shchipanov
Article

A description is presented of an information-modeling system developed to help optimize the composition of the charge materials and fluxes in sintering and blast-furnace smelting. The system is based on models that provide for end-to-end accounting of the sintering-machine and blast-furnace charges, calculate the technical-economic indices of blast-furnace smelting (coke rate, productivity) when there are changes in the blast parameters, the properties of the coke, and the composition of the iron-ore-bearing part of the charge, calculate the properties of the primary and secondary slags and the desulfurizing ability of the final slag, predict the sulfur content of the pig iron; model the gasdynamic regime during smelting, and diagnose the course of the smelting operation. The software that has been developed is designed to automate the work station of production personnel in the blast-furnace shop at the Magnitogorsk Metallurgical Combine.

Keywords

blast-furnace smelting mathematical modeling smelting parameters iron-ore-bearing raw materials 

References

  1. 1.
    J. Yagi, "Mathematical model of blast furnace progress and application to new technology development," 6th Int. Congr. on the Science and Technology of Ironmaking – ICSTI, 42nd Int. Meeting on Ironmaking and 13th Symp. on Iron Ore, Rio de Janeiro, Brazil, Oct. 14–18, 2012, pp. 1660–1674.Google Scholar
  2. 2.
    Yasuo Omori (ed.), Blast Furnace Phenomena and Modeling, Elsevier Applied Science, London and New York (1987).Google Scholar
  3. 3.
    E. Vapaavuori, "Application of expert systems and knowledge based systems to support operation of iron blast furnace," Expert Syst. Applic., 12, No. 2, II (1997).Google Scholar
  4. 4.
    S. Ueda, S. Natsui, T. Ariyama, et al., "Recent progress and future perspective on mathematical modeling of blast furnace," ISIJ Int., 50, No. 7, 914–923 (2010).CrossRefGoogle Scholar
  5. 5.
    S. Matsuzaki, T. Nishimura, A. Shinotake, et al. “Development of mathematical model of blast furnace,” Nippon Steel Techn. Rep., No. 94, 87–95, July 2006.Google Scholar
  6. 6.
    P. Hera, F. Birlan, I. Oprescu, et al, "Modeling of metallurgical continuous processes in the blast furnace," U.P.B. Sci. Bull., Ser. B, 73, No. 4, 171–182 (2011).Google Scholar
  7. 7.
    Yu. S. Yusfin (ed.), Metallurgy of Pig Iron, IKTs Akademkniga, Moscow (2004).Google Scholar
  8. 8.
    N. A. Spirin (ed.), V. V. Lavrov, V. Yu. Rybolovlev, et al., Model Systems for the Support of Decision-Making in the Automated Process Control System of Blast Furnaces, UrFU, Ekaterinburg (2011).Google Scholar
  9. 9.
    O. P. Onorin, N. A. Spirin (ed.), V. L. Terent'ev, et al., Computerized Methods of Modeling Blast-Furnace Smelting, UGTU-UPI, Ekaterinburg (2005).Google Scholar
  10. 10.
    V. V. Lavrov, N. A. Spirin, A. A. Burykin, and E. A. Devyatykh, Comp. Progr. Cert. No. 2013617315, “Information-modeling system for optimizing the blast-furnace charge,” subm. 11.18.2011, registr. 08.08.2013 (RF).Google Scholar
  11. 11.
    I. G. Tovarovskii, V. I. Bol'shakov, and A. E. Merkulov, Analytical Studies of Blast-Furnace Smelting, ChMP Ekonomika, Dnepropetrovsk (2011).Google Scholar
  12. 12.
    S. V. Emel'yanov, S. K. Korovin, L. P. Myshlayev, et al., Theory and Practice of Prediction in Control Systems, Izd. Ross. Univ., Kuzbassvuzizdat–ASTSh (2008).Google Scholar
  13. 13.
    I. O. Odintsov, Professional Programming. Systems Approach, BKhV-Peterburg, St. Petersburg (2004), 2nd ed.Google Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  • N. A. Spirin
    • 1
  • V. V. Lavrov
    • 1
  • I. E. Kosachenko
    • 2
  • O. P. Onorin
    • 3
  • A. S. Istomin
    • 1
  • A. A. Burykin
    • 1
  • K. A. Shchipanov
    • 1
  1. 1.Ural Federal UniversityEkaterinburgRussia
  2. 2.Magnitogorsk Metallurgical CombineMagnitogorskRussia
  3. 3.Ural Institute of MetalsEkaterinburgRussia

Personalised recommendations