, Volume 57, Issue 11–12, pp 996–1004 | Cite as

Evolution of Austenite Grain Structure and Microalloying Element Precipitation During Heating of Steel of Strength Class K65 (X80) for Rolling

  • D. A. Ringinen
  • A. V. Chastukhin
  • G. E. Khadeev
  • L. I. Efron
  • V. I. Il’inskii

The effect of temperature and soaking time during slab heating for rolling on austenite structure size and uniformity, and dissolution of microalloying element precipitates, is considered. It is shown that the heating regime has a strong effect on austenite structure uniformity. With an increase in heating temperature, there is anomalous growth of individual grains, and this is a consequence of gradual microalloying element dissolution. As a result of this, boundaries acquire mobility, thus leading to generation of secondary recrystallization and significant inhomogeneity, and embrittlement of the structure. It is also shown that austenite grain size and distribution after heating is inherited during roughing rolling.


heating grain growth austenite pipe steel Gleeble microalloying element precipitates roughing rolling 


  1. 1.
    P. I. Polukhin,V. M. Klimenko,V. P. Polukhin, et al., Thin Sheet Rolling [in Russian], Metallurgiya, Moscow (1984).Google Scholar
  2. 2.
    M. A. Benyakovskii, K. N. Bogoyavlenskii, A. I. Vitkin, et al., Rolled Product Technology: Handbook [in Russian], Metallurgiya, Moscow (1991), Book 2.Google Scholar
  3. 3.
    V. V. Bykov and I. V. Frantsenyuk, Choice of Metal Heating Regimes [in Russian], Metallurgiya, Moscow (1980).Google Scholar
  4. 4.
    S. S. Gorelik, S. V. Dobatkin, and L. M. Kaputkina, Recrystallization of Metals and Alloys [in Russian], MISiS, Moscow (2005).Google Scholar
  5. 5.
    R. U. Kan and P. T. Haazen, Physical Metallurgy, Vol. 3, Physicomechanical Properties of Metals and Alloys [Russian translation], Metallurgiya, Moscow (1987).Google Scholar
  6. 6.
    V. Yu. Novikov, Secondary Recrystallization [in Russian], Metallurgiya, Moscow (1990).Google Scholar
  7. 7.
    V. I. Bogorzhel’skii, Yu. I. Chistyakov, L. M. Utenskii, et al., “Effect of austenitizing temperature on structure of low-carbon steel after controlled rolling,” Izv. Akad. Nauk SSSR, Metally, No. 5, 105–107 (1980).Google Scholar
  8. 8.
    Yu. I. Matrosov and V. N. Filimonov, “Structure and properties of steel 09G2FB after controlled rolling,” Izv. Vyssh. Uchebn. Zaved., Chern. Met., No. 1, 92–96 (1981).Google Scholar
  9. 9.
    Z. Pastrnak, “Rizene valcovani pasu pro velkoprumerove trubky se svaren ve sroubovici,” Hutnik, 36, No. 1, 24–30 (1986).Google Scholar
  10. 10.
    Yu. D. Morozov et al., “Improvement of steel 09G2S cold resistance,” Stal, No. 12, 54–59 (1994).Google Scholar
  11. 11.
    V. K. Potenmkin and V. A. Peshkov, “Controlled rolling. Thermomechanical treatment of sheet,” Itogi Nauki Tekhn. Prokat. Voloch. Proizvod., VINITI, Moscow (1986), Vol. 14, pp. 3–55.Google Scholar
  12. 12.
    Yu. I. Matrosov, “Effect of controlled rolling conditions on structural transformation and properties of low-pearlitic steels,” Stal, No. 2, 68–72 (1985).Google Scholar
  13. 13.
    S. Akhlaghi and D. G. Ivey, “Precipitation behavior of a grade 100 structural steel,” Canad. Met. Quarterly, 41, No. 1, 111–119 (2002).CrossRefGoogle Scholar
  14. 14.
    R. Wang, C. I. Garcia, M. Hua, et al., “Microstructure and precipitation behavior of Nb, Ti complex microalloyed steel produced by compact strip processing,” ISIJ Int., 46, No. 9, 13451353 (2006).CrossRefGoogle Scholar
  15. 15.
    T. Siwecki, “Evolution of microstructure during recrystallization hot rolling,” Proc. Int. Symp. Microalloyed Vanadium Steels, Cracow (1990), pp. 63–78.Google Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  • D. A. Ringinen
    • 1
  • A. V. Chastukhin
    • 1
  • G. E. Khadeev
    • 1
  • L. I. Efron
    • 1
  • V. I. Il’inskii
    • 1
  1. 1.Vyksa Metallurgical PlantVyksaRussia

Personalised recommendations