, Volume 57, Issue 7–8, pp 647–653 | Cite as

Leaching of Refractory Gold Ores by Microwave Irradiation: Comparison with Conventional Leaching

  • G. Chen
  • J. Chen
  • Z. Y. Zhang
  • S. H. Guo
  • Z. B. Zhang
  • J. H. Peng
  • C. Srinivasakannan
  • X. Q. Li
  • Y. K. Zhuang
  • Z. M. Xu

The present paper attempts to assess the effects of microwave irradiation on the leachability of refractory gold ores. Characteristics of the crystal structure and microstructure of the ores were determined by x-ray structural analysis (XRD) and scanning electron microscopy (SEM) before and after microwave irradiation. Compared to conventional processes, microwave leaching processes are highly energy-efficient, take less time, and do not harm the environment. The experimental results show that the amount of gold extracted increases with microwave leaching temperature. The results demonstrate that microwave irradiation techniques can be applied effectively and efficiently to the leaching of refractory gold ores.


refractory gold ores leaching microwave irradiation 


  1. 1.
    F. Beolchini, V. Fonti, F. Ferella, and F. Veglio, "Metal recovery from spent refinery catalysts by means of biotechnological strategies" J. Hazard. Mater., 178, No. 1–3, 529–534 (2010)CrossRefGoogle Scholar
  2. 2.
    P. Zhu, K. F. Li, M. Zhou, and X. S. Zhang, "Study of in Situ Leaching Gold from Refractory Gold Ores with Method of Ultrasonic-Aided Electro-Chlorination," Rare Metal Mat. Eng., 38, No. 6, 1091–1095 (2009).Google Scholar
  3. 3.
    L. Kushakova and A. Muszer, "Optimisation of roasting of arsenic-carbon refractory gold ores for cyanide leaching," Physicochem. Probl. Mineral Pro., 43, 59–64 (2009).Google Scholar
  4. 4.
    J. P Vaughan and A. Kyin, "Refractory gold ores in Archaean greenstones, Western Australia: mineralogy, gold paragenesis, metallurgical characterization and classification," Mineral. Mag., 68, No. 2, 255–277 (2004).CrossRefGoogle Scholar
  5. 5.
    R. I. Amankwah, W. T. Yen, and J. A. Ramsay, J.A., "A two-stage bacterial pretreatment process for double refractory gold ores," Miner. Eng., 18, No. 1, 103–108 (2005).Google Scholar
  6. 6.
    L. R. P. de Andrade Lima, L. A. Bernardez, and L. A. D. Barbosa, "Characterization and treatment of artisanal gold mine tailings," J. Hazard. Mater., 150, No. 3, 747–753 (2008).CrossRefGoogle Scholar
  7. 7.
    M. Benzaazoua, P. Marion, F. Robaut, and A. Pinto, "Gold-bearing arsenopyrite and pyrite in refractory ores: analytical refinements and new understanding of gold mineralogy," Mineral. Mag., 71, 123–142 (2007).CrossRefGoogle Scholar
  8. 8.
    J. A. Brierley, "Response of microbial systems to thermal stress in biooxidation-heap pretreatment of refractory gold ores," Hydrometallurgy, 71, No. 1–2, 13–19 (2003).Google Scholar
  9. 9.
    O. V. Loseva, V. I. Radomskaya, L. I. Rogulina, et al., "The refined method of sample preparation and chemical analysis for refractory gold-silver ores: Case study of the Maisk deposit, Primorye," Dokl. Earth Sci., 408, No. 4, 547–550 (2006).CrossRefGoogle Scholar
  10. 10.
    E. Elorza-Rodriguez, F. Nava-Alonso, J. Jara, and C. Lara-Valenzuela, "Treatment of pyritic matrix gold-silver refractory ores by ozonization-cyanidation," Miner. Eng., 19, No. 1, 56–61 (2006).CrossRefGoogle Scholar
  11. 11.
    N. Gonen, O. S. Kabasakal, and G. Ozdil, "Recovery of cyanide in gold leach waste solution by volatilization and absorption," J. Hazard. Mater., 113, No. 1–3, 231–236 (2004).CrossRefGoogle Scholar
  12. 12.
    T. L. Deng, M. X. Liao, M. H. Wang, et al., "Investigations of accelerating parameters for the biooxidation of low-grade refractory gold ores," Miner. Eng., 13, No. 14–15, 1543–1553 (2000).CrossRefGoogle Scholar
  13. 13.
    T. T. Chen, L. J. Cabri, and J. E. Dutrizac, "Characterizing gold in refractory sulfide gold ores and residues," JOM, 54, No. 12, 20–22 (2002).Google Scholar
  14. 14.
    M. N. Chandraprabha, J. M. Modak, K. A. Natarajan, and A. M. Raichur, "Strategies for efficient start-up of continuous biooxidation process for refractory gold ores," Miner. Eng., 15, No. 10, 751–753 (2002). 751–753.Google Scholar
  15. 15.
    R. R. Fernandez, H. Y. Sohn, and K. M. LeVier, "Process for treating refractory gold ores by roasting under oxidizing conditions," Miner. Metall. Process, 17, No. 1, 1–6 (2000).Google Scholar
  16. 16.
    B. Nanthakumar, C. A. Pickles, and S. Kelebek, "Microwave pretreatment of a double refractory gold ore," Miner. Eng., 20, 1109–1119 (2007).CrossRefGoogle Scholar
  17. 17.
    H. Y. Xia, J. H. Peng, H. Niu, et al., "Non-isothermal microwave leaching kinetics and absorption characteristics of primary titanium-rich materials," Trans. Nonferrous Met. Soc. China, 20, No. 4, 721–726 (2010).CrossRefGoogle Scholar
  18. 18.
    Z. B. Zhang, Z. Y. Zhang, H. Niu, et al., "Effects of microwave pretreatment on zinc extraction from spent catalyst saturated with zinc acetate," Trans. Nonferrous Met. Soc. China, 20, S182–S186 (2010).CrossRefGoogle Scholar
  19. 19.
    K. B. Yang, J. H. Peng, C. Srinivasakannan, et al., "Preparation of high surface area activated carbon from coconut shells using microwave heating," Bioresour. Technol., 101, No. 15, 6163–6169 (2010).CrossRefGoogle Scholar
  20. 20.
    B. G. Liu, J. H. Peng, D. F. Huang, et al., "Temperature rising characteristics of ammonium diurante in microwave fields," Nucl. Eng. Des., 240, No. 10, 2710–2713 (2010)CrossRefGoogle Scholar
  21. 21.
    W. Li, L. B. Zhang, J. H. Peng, et al., "Effects of microwave irradiation on the basic properties of woodceramics made from carbonized tobacco stems impregnated with phenolic resin," Ind. Crop. Prod., 28, No. 2, 143–154 (2008).CrossRefGoogle Scholar
  22. 22.
    B. G. Liu, J. H. Peng, L. B. Zhang, et al., "Microwave absorbing characteristics and temperature increasing behavior of basic cobalt carbonate in microwave field," J. Cent. South Univ. Technol., 17, No. 6, 1211–1215 (2010)CrossRefGoogle Scholar
  23. 23.
    Z. Y. Zhang, W. W. Qu, J. H. Peng, et al., "Comparison between microwave and conventional thermal reactivations of spent activated carbon generated from vinyl acetate synthesis," Desalination, 249, No. 1, 247–252 (2009).Google Scholar
  24. 24.
    G. Chen, J. Chen, J. H. Peng, and R. D. Wan, "Green evaluation of microwave-assisted leaching process of high titanium slag on life cycle assessment," Trans. Nonferrous Met. Soc. China, 20, S198–S204 (2010).CrossRefGoogle Scholar
  25. 25.
    S. H. Guo, W. Li, J. H. Peng, et al., "Microwave-absorbing characteristics of mixtures of different carbonaceous reducing agents and oxidized ilmenite," Int. J. Miner. Process., 93, No. 3–4, 289–293 (2009).CrossRefGoogle Scholar
  26. 26.
    G. Chen, J. H. Peng, J. Chen, and S. M. Zhang, "Response Surface Methodology Applied to Optimize the Experimental Conditions for Preparing Synthetic Rutile by Microwave Irradiation," High Temp. Mater. Process, 28, No. 3, 165–174 (2009).Google Scholar
  27. 27.
    W. Li, J. H. Peng, L. B. Zhang, et al., "Pilot-scale extraction of zinc from the spent catalyst of vinyl acetate synthesis by microwave irradiation," Hydrometallurgy, 92, No. 1–2, 79–85 (2008).Google Scholar
  28. 28.
    R. K. Amankwah, A. U. Khan, C. A. Pickles, and W. T. Yen, "Improved grindability and gold liberation by microwave pretreatment of a free-milling gold ore," Miner. Process Extr. Metall., 114, No. 3, C30–C36 (2005).CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  • G. Chen
    • 1
  • J. Chen
    • 1
  • Z. Y. Zhang
    • 1
  • S. H. Guo
    • 1
  • Z. B. Zhang
    • 1
  • J. H. Peng
    • 1
  • C. Srinivasakannan
    • 2
  • X. Q. Li
    • 3
  • Y. K. Zhuang
    • 3
  • Z. M. Xu
    • 3
  1. 1.Key Laboratory of Unconventional Metallurgy, Ministry of Education, Faculty of Metallurgy and Energy EngineeringKunming University of Science and EngineeringKunmingChina
  2. 2.Chemical Engineering ProgramThe Petroleum InstituteUAEAbu Dhabi
  3. 3.Jinchiling Gold MineZhaojin Mining Industry Company, Ltd.ZhaoyuanChina

Personalised recommendations