, Volume 57, Issue 3–4, pp 274–283 | Cite as

Simulation of the combined effect of production factors on metallurgical sinter mechanical strength


Problems are considered for choice of properties for evaluating sinter quality, and also choice of structure and creation of a simulation model for calculating mechanical cold (tumble) strength index using a selection of models describing the effect of individual features of the process.


metallurgical sinter quality mechanical cold strength (tumble index) basicity simulation model 


  1. 1.
    E. Donskoi, J. R. Manuel, J. M. F. Clout, and Y. Zhang, “Mathematical modelling and optimization of iron ore sinter properties,” Proc. of 4th Int. Conf. on Mathematical Modelling and Computer Simulation of Material Technologies – MMT-2006, College of Judea and Samaria, Ariel, Israel, September 11–15, 2006.Google Scholar
  2. 2.
    V. I. Korotich, Yu. A. Frolov, and G. N. Bezdezhkii, Ore Material Sintering [in Russian], UGTU-UPI, Ekaterinburg (2003).Google Scholar
  3. 3.
    M. K. Kalenga and A. M. Garbers-Craig, “Investigation into how the magnesia, silica, and alumina contents of iron ore sinter influence, its mineralogy and properties,” J. South. African Inst. of Mining and Metallurgy, 110, August, 447–456 (2010).Google Scholar
  4. 4.
    D. V. Lupanov, G. N. Popov, S. V. Kuberskii, et. al., “Study of sintering using different forms of fluxes in charges,” Coll. Sci. Works, Donbass. State. Techn. Univ (2008), Iss. 27.Google Scholar
  5. 5.
    N. R. Mansurova, “Effect of charge genesis and basicity on mineralogical composition and metallurgical sinter properties,” Diss. Cand. Tech. Sci.: 05.16.02, Moscow (2007).Google Scholar
  6. 6.
    Hsieh Li-Heng, “Effect of Raw Material Composition on the Sintering Properties,” ISIJ Int., 45, No. 4, 555–559 (2005).Google Scholar
  7. 7.
    L. Lu, R. J. Holmes, and J. R. Manuel, “Effects of alumina on sintering performance of hematite iron ores,” ISIJ Int., 47, No. 3, 349–358 (2007).CrossRefGoogle Scholar
  8. 8.
    D. V. Karymov, G. V. Gubin, and L. N. Saitgareev, “Effect of solid fuel consumption on sintering indices for hematite and magnetite concentrate mixtures,” Visnik KTU, No. 27, 149–151 (2011).Google Scholar
  9. 9.
    V. I. Klein, E. M. Maizel, Yu. G. Yaroshenko, and A. A. Avdeenko, Heat Engineering Methods of Analysis for Sintering [in Russian], UGTU-UPI, Ekaterinburg (2004).Google Scholar
  10. 10.
    Z. K. Kabakov, A. A. Eliseev, and Yu. V. Veselov, “Mathematical model of heat- and mass-transfer during charge sintering,” Izv. Vyssh. Uchebn. Zaved. Chern. Met., No. 1, 19–22 (2008).Google Scholar
  11. 11.
    G. V. Gubin and S. G. Sabel’ev, “Analysis of sintering intensity on sinter strength,” Met. Gorn. Prom., No. 4, 13–16 (2011).Google Scholar
  12. 12.
    E. N. Ishmet’ev, Z. G. Salikhov, A. D. Sokolov, et al., RF Patent 2373527, IPC G01N27/00, Automatic Complex for Continuous Monitoring of Moving Metal-Containing Mixture Chemical Composition and Quality, subm. 04.23.2008, publ. 11.20.2009, Byull., No. 32.Google Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  1. 1.Nosov Magnitogorsk State Technical UniversityMagnitogorskRussia

Personalised recommendations