, Volume 56, Issue 1–2, pp 75–84 | Cite as

Mechanical and metallurgical characterization of 8090 Al–Li alloy welded joints

  • L. Bonaccorsi
  • G. Costanza
  • S. Missori
  • A. Sili
  • M. E. Tata

The properties of Al–Li alloys have been extensively studied recently for structural applications in automotive and aerospace industry, thanks to their lower density and enhanced modulus of elasticity. In common with many Al alloys, one of the main issues is the loss of toughness and soundness of welded joints consequent upon welding operations, in particular, possible cracking in the weld metal and metallurgical modifications induced in the heat-affected zone. In this work, welding trials were carried out on 8090 Al–Li plates welded by electric arc, using a 5% Mg filler metal. Joints were mechanically and metallurgically characterized through tensile and microhardness tests, optical and scanning electron microscopy, and fractography on both welded and unwelded tensile specimens. Energy dispersive spectroscopy (EDS) measurements were also performed to evaluate chemical composition locally and determine the nature of precipitates.


Al–Li alloy welds metallography SEM EDS microhardness fractography 


  1. 1.
    R. T. Holt, A. K. Koul, L. Zhao,W. Wallalce, J. C. Beddoes, and J. P. Immarigeon, “Lightweight materials for aircraft applications,” Mater. Charact., 35, No. 1, 41–67 (1995).CrossRefGoogle Scholar
  2. 2.
    V. Wagner, “Evoluzione delle leghe di alluminio per aeronautica dopo le due guerre mondiali,” La Metallurgia Italiana, No. 6, 9–21 (2005)Google Scholar
  3. 3.
    K. S. Kumar, S. A. Brown, and J. R. Pickens, “Microstructural evolution during aging of an Al–Cu–Li–Ag–Mg–Zr alloy,” Acta Mater., 44, No. 5, 1899–1915 (1996).CrossRefGoogle Scholar
  4. 4.
    M. L. Bairwa and P. P. Date, “Effect of heat treatment on the tensile properties of Al–Li alloys.” J. Mater. Process. Technol., No. 153–154, 603–607 (2004).Google Scholar
  5. 5.
    J. F. Nie and B. C. Muddle, “On the form of the age-hardening response in high strength aluminium alloys,” Mater. Sci. Eng., A319–321, 448–451 (2001).Google Scholar
  6. 6.
    J. Dutkiewicz, O. Simmich, R. Scholz, and R. Ciach, “Evolution of precipitates in AlLiCu and AlLiCuSc alloys after age-hardning treatment,” Mater. Sci. Eng., A234–236, 253–257 (1997).Google Scholar
  7. 7.
    B. Irving, “Welding the four most popular aluminium alloys,” Welding Int., 73, No. 2, 51–55 (1994).Google Scholar
  8. 8.
    G. D. Janaki Ram, T. K. Mitra, M. K. Raju, and S. Sundaresan, “Use of inoculants to refine weld solidification structure and improve weldability in type 2090 Al–Li alloy,” Mater. Sci. Eng., A276, 48–57 (2000).Google Scholar
  9. 9.
    J. H. Sanders, “Investigation of grain boundary chemistry in Al–Li 2195 weld using Auger electron spectroscopy,” Thin Solid Films, 277, No. 1–2, 121–127 (1996).CrossRefGoogle Scholar
  10. 10.
    A. Kostrivas and J. C. Lippold, “Weldability of Li-bearing aluminium alloys,” Int. Mater. Rev., 44, No. 6, 217–237 (1999).CrossRefGoogle Scholar
  11. 11.
    S. P. Ringer and K. Hono, “Microstructural evolution and age hardening in aluminium alloys: atom probe field – ion microscopy and trasmission electron microscopy studies,” Mater. Charact., 44, 101–131 (2000).CrossRefGoogle Scholar
  12. 12.
    Bi-Ping Huang and Zi-Qiao Zheng, “Effects of Li content on precipitation in Al–Cu–(Li)–Mg–Ag–Zr alloys,” Scripta Mater., 38, No. 3, 357–362 (1998).CrossRefGoogle Scholar
  13. 13.
    G. O. Rading, M. Shamsuzzoha, and J. T. Berry, “A model for HAZ hardness profiles in Al–Li–X alloys: application to the Al–Li–Cu alloy 2095,” Welding J., 77, No. 9, 382s–387s (1998).Google Scholar

Copyright information

© Springer Science+Business Media, Inc. 2012

Authors and Affiliations

  • L. Bonaccorsi
    • 1
  • G. Costanza
    • 2
  • S. Missori
    • 2
  • A. Sili
    • 1
  • M. E. Tata
    • 2
  1. 1.MessinaItaly
  2. 2.Tor VergataItaly

Personalised recommendations