, 55:450 | Cite as

Features of dust formation in the oxygen-blowing of melts and possible uses of captured dust

  • L. M. Simonyan
  • N. M. Govorova

This article examines features of smoke (dust) formation in a steelmaking furnace when the bath is blown with oxygen. Smoke formation is examined at every stage of the process – from the dispersal of the melt to the aggregation of particles in the flue system. Results are presented from the use of electron microscopy and thermodynamic calculations to determine the phase composition of the disperse-phase particles. Possible uses for the dust that is captured are discussed.

Key words

steelmaking dust blowing with oxygen dust formation converter electric furnace disperse phase iron oxides magnetite hematite maghemite wüstite aerosol 


  1. 1.
    A. G. Svyazhin, “Mechanism of dust formation in steel production,” Stal, No. 12, 78–81 (1999).Google Scholar
  2. 2.
    N. M. Morekhina, Investigation of the Process of Smoke Generation in the Oxygen-Blowing of an Iron-Carbon Melt: Engineering Sciences Candidate Dissertation, Moscow (1971).Google Scholar
  3. 3.
    N. M. Govorova,Yu. D. Glebov, and A. G. Kiselev, Izv. Vyssh. Uchebn. Zaved. Chern. Metall., No. 5, 112–118 (1988).Google Scholar
  4. 4.
    R. V. Gilly, Iron and Steel, 43, No. 39, 192–201 (1966).Google Scholar
  5. 5.
    K. Knaffs and J. M. Slater, J. Iron and Steel Inst., 198, No. 3, 211–216 (1959).Google Scholar
  6. 6.
    Concise Chemical Encyclopedia, Sov. Entsiklopedia, Moscow (1963), Vol. 2 (of 5 volumes).Google Scholar
  7. 7.
    B. G. Trusov, “TERRA software system for modeling phase equilibria and chemical equilibria,” in: Proc. 14th Int. Conf. on Chemical Thermodynamics, St. Petersburg, 2002.Google Scholar
  8. 8.
    L. M. Simonyan, A. A. Khilko, and S. V. Zubkova, “Properties of electric steelmaking dust and analysis of possible directions of its use,” Elektrometallurgiya, No. 8, 28–34 (2010).Google Scholar
  9. 9.
    L. M. Simonyan, A. A. Khilko, A. A. Lysenko, et al., “Dust from electric steelmaking as a disperse system,” Izv. Vyssh. Uchebn. Zaved. Chern. Metall., No. 11, 68–75 (2010).Google Scholar
  10. 10.
    A. P. Stovpchenko, L. V. Kamkina, Yu. S. Proidak, et al, Electrometallurgiya, No. 8, 29–36 (2009).Google Scholar
  11. 11.
    I. P. Dobrovolskii, P. N. Rymarev, and T. A. Safin, “Promising technology for using slag and dust from converter steelmaking,” Vestn. Chelyab. Gos. Univ. Ekologiya. Prirodopol., Iss. 3, No. 17 (2008).Google Scholar
  12. 12.
    Peredovye Poroshkovye Tekhnologii Company, Russia,
  13. 13.
  14. 14.
    V. F. Petrunin, “Ultradispersed (nanoscopic) powders – promising nanomaterials,”
  15. 15.
    V. I. Ivashov, Russian Federation Patent No. RU2010006, “Method of concentrating substances and extracting them from solutions,”
  16. 16.
    M. Bonini, S. Lenz, R. Giorgi, and P. Baglioni, Nano-Magnetic Sponges for Cleaning of Works of Art. Langmuir, 2007, 23 (17), pp. 8681–8685, DOI:  10.1021/la701292d, publ. (Web) July 11, 2007, Copyright © 2007 American Chemical Society.
  17. 17.
    E. K. Kopkova and L. I. Sklokin, High-Purity Iron Compounds: Areas of Application, Main Sources of Natural and Secondary Technogenic Raw Materials, and Trends in Manufacturing Technologies (survey) [in Russian], Inst. Khim. Tekhnol. Redk. Elem. Miner. Syrya im. I. V. Tananaeva, Apatity (2003), deposited in VINITI 06.26.03, No. 1246-B2003.Google Scholar
  18. 18.
    A. A. Ilyin, Mechanochemical Synthesis of Catalysts for the Medium-Temperature Conversion of Carbon Monoxide by Water Vapor: Engineering Sciences Candidate Dissertation, Ivanovo (2006).Google Scholar
  19. 19.

Copyright information

© Springer Science+Business Media, Inc. 2011

Authors and Affiliations

  1. 1.National Research Technological University – Moscow Institute of Steel and Alloys (NITU MISiS)MoscowRussia

Personalised recommendations